A Heterogeneous Quasi-solid-State Hybrid Electrolyte Constructed from Electrospun Nanofibers Enables Robust Electrode/Electrolyte Interfaces for Stable Lithium Metal Batteries

Manxi Wang, Shiwen Lv, Manxian Li, Xuan Li, Chuanping Li, Zulin Li, Xiaochuan Chen, Junxiong Wu, Xiaoyan Li, Yuming Chen, Qinghua Chen

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (3) : 727-738. DOI: 10.1007/s42765-023-00371-8

A Heterogeneous Quasi-solid-State Hybrid Electrolyte Constructed from Electrospun Nanofibers Enables Robust Electrode/Electrolyte Interfaces for Stable Lithium Metal Batteries

Author information +
History +

Abstract

Quasi-solid-state electrolytes that possess high ionic conductivity, excellent interface stability, and low interfacial resistance, are required for practical solid-state batteries. Herein, a heterogeneous quasi-solid-state hybrid electrolyte (QSHE) with a robust lithium-ion transport layer composed of Li1+xAl xTi2−x(PO4)3 (LATP) nanoparticles (NPs) at the anode/electrolyte interface was fabricated using electrospun nanofibers as a skeleton via a facile in situ polymerization approach. The QSHE exhibits a high ionic conductivity (0.98 mS cm−1), a wide electrochemical window (4.76 V vs. Li/Li+), and favorable compatibility with lithium metal (maintaining stability over 2000 h in a symmetrical cell) at room temperature. When coupled with a Li|LiFePO4 battery, the QSHE enables the battery to retain 95.4% of its capacity after 300 cycles at 2 C. Moreover, the atomic force microscopy verifies the high Young’s modulus of the LATP-dominated bottom layer, while numerical simulation validates the effective distribution of lithium ions at the interface facilitated by LATP NPs, hence contributing to dendrite-free lithium plating/stripping morphology. This straightforward strategy could pave the way for the development of high-performance and interfacially stable lithium metal batteries.

Keywords

In situ polymerization / Quasi-solid-state electrolytes / Interface compatibility / Lithium dendrites

Cite this article

Download citation ▾
Manxi Wang, Shiwen Lv, Manxian Li, Xuan Li, Chuanping Li, Zulin Li, Xiaochuan Chen, Junxiong Wu, Xiaoyan Li, Yuming Chen, Qinghua Chen. A Heterogeneous Quasi-solid-State Hybrid Electrolyte Constructed from Electrospun Nanofibers Enables Robust Electrode/Electrolyte Interfaces for Stable Lithium Metal Batteries. Advanced Fiber Materials, 2024, 6(3): 727‒738 https://doi.org/10.1007/s42765-023-00371-8

References

[1]
Chen Y, Xu M, Huang Y, Manthiram A. Creating a rechargeable world. Chemistry, 2022, 8: 312,
CrossRef Google scholar
[2]
Ma L, Chen H, Wu J, Lv Y, Chen X, Li X, Li QJ, Di J, Chen Y. Recent progress on zeolitic imidazolate frameworks and their derivatives in alkali metal-chalcogen batteries. Adv Energy Mater, 2021, 12: 2103152,
CrossRef Google scholar
[3]
Li C, Tong L, Wang S, Liu Q, Wang Y, Li X, Wang M, Li M, Chen X, Wu J, Chen Q, Mai YW, Fan W, Chen Y, Li X. Nitrogen doping induced by intrinsic defects of recycled polyethylene terephthalate-derived carbon nanotubes. SusMat, 2023, 3: 431,
CrossRef Google scholar
[4]
Iqbal H, Sarwar S, Kirli D, Shek JKH, Kiprakis AE. A survey of second-life batteries based on techno-economic perspective and applications-based analysis. Carbon Neutrality, 2023, 2: 8,
CrossRef Google scholar
[5]
Ma L, Lv Y, Wu J, Chen Y, Jin Z. recent advances in emerging non-lithium metal-sulfur batteries: a review. Adv Energy Mater, 2021, 11: 2100770,
CrossRef Google scholar
[6]
Wang Z, Li X, Chen Y, Pei K, Mai Y-W, Zhang S, Li J. Creep-enabled 3D solid-state lithium-metal battery. Chemistry, 2020, 6: 2878,
CrossRef Google scholar
[7]
Wu J, He J, Wang M, Li M, Zhao J, Li Z, Chen H, Li X, Li C, Chen X, Li X, Mai YW, Chen Y. Electrospun carbon-based nanomaterials for next-generation potassium batteries. Chem Commun, 2023, 59: 2381,
CrossRef Google scholar
[8]
Li M, Chen H, Wang Y, Chen X, Wu J, Su J, Wang M, Li X, Li C, Ma L, Li X, Chen Y. Two birds with one stone: engineering siloxane-based electrolytes for high-performance lithium-sulfur polyacrylonitrile batteries. J Mater Chem A, 2023, 11: 11721,
CrossRef Google scholar
[9]
Li C, Qiu M, Li R, Li X, Wang M, He J, Lin G, Xiao L, Qian Q, Chen Q, Wu J, Li X, Mai Y-W, Chen Y. Electrospinning engineering enables high-performance sodium-ion batteries. Adv Fiber Mater, 2022, 4: 43,
CrossRef Google scholar
[10]
Xu X, Cheng X, Jiang F, Yang S, Ren D, Shi P, Hsu H, Yuan H, Huang J, Ouyang M, Zhang Q. Dendrite-accelerated thermal runaway mechanisms of lithium metal pouch batteries. SusMat, 2022, 2: 435,
CrossRef Google scholar
[11]
Chen Y, Wang Z, Li X, Yao X, Wang C, Li Y, Xue W, Yu D, Kim SY, Yang F, Kushima A, Zhang G, Huang H, Wu N, Mai YW, Goodenough JB, Li J. Li metal deposition and stripping in a solid-state battery via Coble creep. Nature, 2020, 578: 251,
CrossRef Google scholar
[12]
Wang M, Wu Y, Qiu M, Li X, Li C, Li R, He J, Lin G, Qian Q, Wen Z, Li X, Wang Z, Chen Q, Chen Q, Lee J, Mai YW, Chen Y. Research progress in electrospinning engineering for all-solid-state electrolytes of lithium metal batteries. J Energy Chem, 2021, 61: 253,
CrossRef Google scholar
[13]
Li X, Chen W, Qian Q, Huang H, Chen Y, Wang Z, Chen Q, Yang J, Li J, Mai YW. Electrospinning-based strategies for battery materials. Adv Energy Mater, 2020, 11: 2000845,
CrossRef Google scholar
[14]
Yan C-L. Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte. Rare Met, 2020, 39: 458,
CrossRef Google scholar
[15]
Yu Q, Jiang K, Yu C, Chen X, Zhang C, Yao Y, Jiang B, Long H. Recent progress of composite solid polymer electrolytes for all-solid-state lithium metal batteries. Chin Chem Lett, 2021, 32: 2659,
CrossRef Google scholar
[16]
Wu J, Chen X, Fan W, Li X, Mai Y-W, Chen Y. Rationally designed alloy phases for highly reversible alkali metal batteries. Energy Stor Mater, 2022, 48: 223
[17]
Zhang H, Chen Y, Li C, Armand M. Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: a perspective. SusMat, 2021, 1: 24,
CrossRef Google scholar
[18]
Yan C, Zhu P, Jia H, Zhu J, Selvan RK, Li Y, Dong X, Du Z, Angunawela I, Wu N, Dirican M, Zhang X. High-performance 3D fiber network composite electrolyte enabled with Li-ion conducting nanofibers and amorphous PEO-based cross-linked polymer for ambient all-solid-state lithium-metal batteries. Adv Fiber Mater, 2019, 1: 46,
CrossRef Google scholar
[19]
Liu Q, Han X, Wei G, Zhang H, Li Y, Li J, He X. Inorganic composites improving conductivities of solid polymer electrolytes for lithium batteries: a review. ChemNanoMat, 2023, 9,
CrossRef Google scholar
[20]
Wei C, Liu X, Yu C, Chen S, Chen S, Cheng S, Xie J. Revealing performance of 78Li2S-22P2S5 glass-ceramic based solid-state batteries at different operating temperatures. Chin Chem Lett, 2023, 34,
CrossRef Google scholar
[21]
Wang G, Liang Y, Liu H, Wang C, Li D, Fan L-Z. Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries. Interdiscip Mater, 2022, 1: 434,
CrossRef Google scholar
[22]
Zhu J, He S, Tian H, Hu Y, Xin C, Xie X, Zhang L, Gao J, Hao S, Zhou W, Zhang L. The influences of DMF content in composite polymer electrolytes on Li+-conductivity and interfacial stability with Li-metal. Adv Funct Mater, 2023, 33: 2301165,
CrossRef Google scholar
[23]
Wang L, Shi H, Xie Y, Wu Z-S. Fluorinated boron nitride nanosheet enhanced ultrathin and conductive polymer electrolyte for high-rate solid-state lithium metal batteries. Interdiscip Mater, 2023, 2: 789,
CrossRef Google scholar
[24]
Yan W, Gao X, Jin X, Liang S, Xiong X, Liu Z, Wang Z, Chen Y, Fu L, Zhang Y, Zhu Y, Wu Y. Nonporous gel electrolytes enable long cycling at high current density for lithium-metal anodes. ACS Appl Mater Interfaces, 2021, 13: 14258,
CrossRef Google scholar
[25]
Zhijie B, Xiangxin G. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy Mater, 2022, 2,
CrossRef Google scholar
[26]
Xie X, Wang Z, He S, Chen K, Huang Q, Zhang P, Hao SM, Wang J, Zhou W. Influencing factors on li-ion conductivity and interfacial stability of solid polymer electrolytes, exampled by polycarbonates, polyoxalates, and polymalonates. Angew Chem Int Ed, 2023, 135,
CrossRef Google scholar
[27]
Matteo P, Akiko T, Henry A, Maria Assunta N, Stefano P. Ionic liquids and their derivatives for lithium batteries: role, design strategy, and perspectives. Energy Mater, 2023, 3,
CrossRef Google scholar
[28]
Wang S, Zhang J, Hua W, Wen L, Tang G, Wang X, Ma C, Chen W. Solvation-enhanced electrolyte on layered oxide cathode tailoring even and stable CEI for durable sodium storage. Carbon Neutrality, 2023, 2: 20,
CrossRef Google scholar
[29]
Cheng H, Yan C, Orenstein R, Dirican M, Wei S, Subjalearndee N, Zhang X. Polyacrylonitrile nanofiber-reinforced flexible single-ion conducting polymer electrolyte for high-performance, room-temperature all-solid-state Li-metal batteries. Adv Fiber Mater, 2022, 4: 532,
CrossRef Google scholar
[30]
Wang L, Xu S, Wang Z, Yang E, Jiang W, Zhang S, Jian X, Hu F. A nanofiber–gel composite electrolyte with high Li+ transference number for application in quasi-solid batteries. eScience, 2023, 3,
CrossRef Google scholar
[31]
Yang Y, Yang W, Yang H, Zhou H. Electrolyte design principles for low-temperature lithium-ion batteries. eScience, 2023, 3,
CrossRef Google scholar
[32]
Yu J, Lin X, Liu J, Yu JTT, Robson MJ, Zhou G, Law HM, Wang H, Tang BZ, Ciucci F. In situ fabricated quasi-solid polymer electrolyte for high-energy-density lithium metal battery capable of subzero operation. Adv Energy Mater, 2021, 12: 2102932,
CrossRef Google scholar
[33]
Chen D, Zhu M, Kang P, Zhu T, Yuan H, Lan J, Yang X, Sui G. Self-enhancing gel polymer electrolyte by in situ construction for enabling safe lithium metal battery. Adv Sci, 2022, 9,
CrossRef Google scholar
[34]
Liu F, Li T, Yang Y, Yan J, Li N, Xue J, Huo H, Zhou J, Li L. Investigation on the copolymer electrolyte of poly(1,3-dioxolane-co-formaldehyde). Macromol Rapid Commun, 2020, 41: 2000047,
CrossRef Google scholar
[35]
Liu Q, Cai B, Li S, Yu Q, Lv F, Kang F, Wang Q, Li B. Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex-situ anodic pretreatment and an in-built gel polymer electrolyte. J Mater Chem A, 2020, 8: 7197,
CrossRef Google scholar
[36]
Liu F, Wang W, Yin Y, Zhang S, Shi J, Wang L, Zhang X, Zheng Y, Zhou J, Li L, Guo Y. Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries. Sci Adv, 2018, 4: eaat5383,
CrossRef Google scholar
[37]
Li L, Li R, Huang Z, Liu M, Xiang J, Shen X, Jing M. High-performance gel electrolyte for enhanced interface compatibility and lithium metal stability in high-voltage lithium battery. Colloid Surface A, 2022, 651,
CrossRef Google scholar
[38]
Ma Q, Yue J, Fan M, Tan S, Zhang J, Wang W, Liu Y, Tian Y, Xu Q, Yin Y, You Y, Luo A, Xin S, Wu X, Guo Y. Formulating the electrolyte towards high-energy and safe rechargeable lithium-metal batteries. Angew Chem Int Ed, 2021, 60: 16554,
CrossRef Google scholar
[39]
Huang K, Bi S, Xu H, Wu L, Fang C, Zhang X. Optimizing Li-ion solvation in gel polymer electrolytes to stabilize Li-metal anode. Chemsuschem, 2023, 16(19),
CrossRef Google scholar
[40]
Rath PC, Liu M, Lo S, Dhaka RS, Bresser D, Yang C, Lee S, Chang JK. Suppression of dehydrofluorination reactions of a Li0.33La0.557TiO3-nanofiber-dispersed poly(vinylidene fluoride-co-hexafluoropropylene) electrolyte for quasi-solid-state lithium-metal batteries by a fluorine-rich succinonitrile interlayer. ACS Appl Mater Interfaces, 2023, 15: 15429,
CrossRef Google scholar
[41]
Chen H, Li M, Li C, Li X, Wu Y, Chen X, Wu J, Li X, Chen Y. Electrospun carbon nanofibers for lithium metal anodes: progress and perspectives. Chin Chem Lett, 2022, 33: 141,
CrossRef Google scholar
[42]
Li X, Chen Y, Huang H, Mai YW, Zhou L. Electrospun carbon-based nanostructured electrodes for advanced energy storage—a review. Energy Storage Mater, 2016, 5: 58,
CrossRef Google scholar
[43]
Chen Z, Kim GT, Kim JK, Zarrabeitia M, Kuenzel M, Liang H, Geiger D, Kaiser U, Passerini S. Highly stable quasi-solid-state lithium metal batteries: reinforced Li1.3Al0.3Ti1.7(PO4)3/Li interface by a protection interlayer. Adv Energy Mater, 2021, 11: 2101339,
CrossRef Google scholar
[44]
Chen L-H, Huang Z-Y, Chen S-L, Tong R-A, Wang H-L, Shao G, Wang C-A. In situ polymerization of 1,3-dioxolane infiltrating 3D garnet framework with high ionic conductivity and excellent interfacial stability for integrated solid-state Li metal battery. Rare Met, 2022, 41: 3694,
CrossRef Google scholar
[45]
Xia M, Liu Q, Zhou Z, Tao Y, Li M, Liu K, Wu Z, Wang D. A novel hierarchically structured and highly hydrophilic poly(vinyl alcohol-co-ethylene)/poly(ethylene terephthalate) nanoporous membrane for lithium-ion battery separator. J Power Sources, 2014, 266: 29,
CrossRef Google scholar
[46]
Li S, Chen Y-M, Liang W, Shao Y, Liu K, Nikolov Z, Zhu Y. A superionic conductive electrochemically stable dual-salt polymer electrolyte. Joule, 1838, 2018: 2
[47]
Zhao C, Chen P, Zhang R, Chen X, Li B-Q, Zhang X, Cheng X, Zhang Q. An ion redistributor for dendrite-free lithium metal anodes. Sci Adv, 2018, 4: eaat3446,
CrossRef Google scholar
[48]
Cui J, Du Y, Zhao L, Li X, Sun Z, Li D, Li H. Thermal stable poly-dioxolane based electrolytes via a robust crosslinked network for dendrite-free solid-state Li-metal batteries. Chem Eng J, 2023, 461,
CrossRef Google scholar
[49]
Zhao Q, Liu X, Stalin S, Khan K, Archer LA. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat Energy, 2019, 4: 365,
CrossRef Google scholar
[50]
Liu W, Yi C, Li L, Liu S, Gui Q, Ba D, Li Y, Peng D, Liu J. Designing polymer-in-salt electrolyte and fully infiltrated 3D electrode for integrated solid-state lithium batteries. Angew Chem Int Ed, 2021, 60: 12931,
CrossRef Google scholar
[51]
Rajendran S, Tang Z, George A, Cannon A, Neumann C, Sawas A, Ryan E, Turchanin A, Arava LMR. Inhibition of lithium dendrite formation in lithium metal batteries via regulated cation transport through ultrathin sub-nanometer porous carbon nanomembranes. Adv Energy Mater, 2021, 11: 2100666,
CrossRef Google scholar
[52]
Wang Y, Lin C, Rao J, Gaskell K, Rubloff G, Lee SB. Electrochemically controlled solid electrolyte interphase layers enable superior Li–S batteries. ACS Appl Mater Interfaces, 2018, 10: 24554,
CrossRef Google scholar
[53]
Didwal PN, Singhbabu YN, Verma R, Sung B-J, Lee G-H, Lee J-S, Chang DR, Park C-J. An advanced solid polymer electrolyte composed of poly(propylene carbonate) and mesoporous silica nanoparticles for use in all-solid-state lithium-ion batteries. Energy Storage Mater, 2021, 37: 476,
CrossRef Google scholar
[54]
Wang H, Wang Q, Cao X, He Y, Wu K, Yang J, Zhou H, Liu W, Sun X. Thiol-branched solid polymer electrolyte featuring high strength, toughness, and lithium ionic conductivity for lithium-metal batteries. Adv Mater, 2020, 32: 2001259,
CrossRef Google scholar
[55]
Gao Y, Yan Z, Gray JL, He X, Wang D, Chen T, Huang Q, Li YC, Wang H, Kim SH, Mallouk TE, Wang D. Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nat Mater, 2019, 18: 384,
CrossRef Google scholar
Funding
National Natural Science Foundation of China(No.22209027); Industry-University Research Joint Innovation Project of Fujian Province(No. 2021H6006); FuXiaQuan National Independent Innovation Demonstration Zone Collaborative Innovation Platform(No. 2022-P-027); Youth Innovation Fund of Fujian Province(No. 2021J05043); Youth Innovation Fund of Fujian Province(No.2022J05046); Award Program for Fujian Minjiang Scholar Professorship

Accesses

Citations

Detail

Sections
Recommended

/