Self-Assembling Peptide Nanofibers Anchored Parathyroid Hormone Derivative for Bone Tissue Engineering

Zhuowen Hao, Tianhong Chen, Ying Wang, Qinyu Feng, Jiayao Chen, Hanke Li, Junwu Wang, Zepu Wang, Zheyuan Zhang, Renxin Chen, Guang Shi, Zhenwei Zou, Lin Cai, Tonghe Zhu, Jingfeng Li

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (2) : 583-606. DOI: 10.1007/s42765-023-00370-9
Research Article

Self-Assembling Peptide Nanofibers Anchored Parathyroid Hormone Derivative for Bone Tissue Engineering

Author information +
History +

Abstract

Parathyroid hormone (PTH) has been used for bone regeneration through intermittent subcutaneous injection; however, the topical administration of PTH for bone repair remains challenging because of the overactivation of osteoclasts. Here, a PTH derivative, i.e., PTHrP-1, which exhibits enhanced osteogenesis and relatively reduced osteoclastogenesis, is anchored to RADA16-I to fabricate a novel self-assembling peptide, called P1R16. Firstly, P1R16 self-assembles into long nanofibers with PTHrP-1 exposed to the side end, which interacts with Type I collagen (Col) to form P1R16-Col composites. The RADA16 segment in P1R16 helps the sustained release of P1R16 from the composites. Secondly, the P1R16 self-assembling peptide nanofibers exhibit multiple functions. The nanofibers promote stem cell proliferation and recruitment, and then direct stem cell fate towards osteogenic differentiation but not adpipogenic differentiation, improving the quality of the regenerated bone. The nanofibers further promote bone regeneration through bone remodeling between osteoblasts and osteoclasts. Thirdly, the P1R16 self-assembling peptide nanofibers also promote the proliferation and recruitment of endothelial cells, which facilitate the vascularization of implants to support bone regeneration further. Overall, the P1R16 self-assembling peptide nanofibers maintain multiple functions, including pro-proliferation, direction of stem cell fate, bone remodeling and vascularization, showing considerable promise for bone tissue engineering to repair bone defects or fractures.

Keywords

Self-assembling peptide / Nanofiber / Parathyroid hormone / Bioactive factor / Bone regeneration

Cite this article

Download citation ▾
Zhuowen Hao, Tianhong Chen, Ying Wang, Qinyu Feng, Jiayao Chen, Hanke Li, Junwu Wang, Zepu Wang, Zheyuan Zhang, Renxin Chen, Guang Shi, Zhenwei Zou, Lin Cai, Tonghe Zhu, Jingfeng Li. Self-Assembling Peptide Nanofibers Anchored Parathyroid Hormone Derivative for Bone Tissue Engineering. Advanced Fiber Materials, 2024, 6(2): 583‒606 https://doi.org/10.1007/s42765-023-00370-9

References

[1]
Huo Y, Hu J, Yin Y, Liu P, Cai K, Ji W. Self-assembling peptide-based functional biomaterials. ChemBioChem, 2023, 24,
CrossRef Google scholar
[2]
Zhang Z, Ai S, Yang Z, Li X. Peptide-based supramolecular hydrogels for local drug delivery. Adv Drug Deliv Rev, 2021, 174: 482,
CrossRef Google scholar
[3]
Pugliese R, Gelain F. Peptidic Biomaterials: from self-assembling to regenerative medicine. Trends Biotechnol, 2017, 35: 145,
CrossRef Google scholar
[4]
Kumar VB, Ozguney B, Vlachou A, Chen Y, Gazit E, Tamamis P. Peptide self-assembled nanocarriers for cancer drug delivery. J Phys Chem B, 2023, 127: 1857,
CrossRef Google scholar
[5]
Hao Z, Li H, Wang Y, Hu Y, Chen T, Zhang S, Guo X, Cai L, Li J. Supramolecular peptide nanofiber hydrogels for bone tissue engineering: from multihierarchical fabrications to comprehensive applications. Adv Sci, 2022, 9,
CrossRef Google scholar
[6]
Gelain F, Luo Z, Zhang S. Self-assembling peptide EAK16 and RADA16 nanofiber scaffold hydrogel. Chem Rev, 2020, 120: 13434,
CrossRef Google scholar
[7]
Yao X, Hu Y, Lin M, Peng K, Wang P, Gao Y, Gao X, Guo T, Zhang X, Zhou H. Self-assembling peptide RADA16: a promising scaffold for tissue engineering and regenerative medicine. Nanomedicine, 2023, 18: 1305,
CrossRef Google scholar
[8]
Wang YL, Lin SP, Nelli SR, Zhan FK, Cheng H, Lai TS, Yeh MY, Lin HC, Hung SC. Self-Assembled peptide-based hydrogels as scaffolds for proliferation and multi-differentiation of mesenchymal stem cells. Macromol Biosci. 2017;17:4.
[9]
Sun X, Yin H, Wang Y, Lu J, Shen X, Lu C, Tang H, Meng H, Yang S, Yu W, Zhu Y, Guo Q, Wang A, Xu W, Liu S, Lu S, Wang X, Peng J. In situ articular cartilage regeneration through endogenous reparative cell homing using a functional bone marrow-specific scaffolding system. ACS Appl Mater Interfaces, 2018, 10: 38715,
CrossRef Google scholar
[10]
Horii A, Wang X, Gelain F, Zhang S. Biological designer self-assembling peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS ONE, 2007, 2,
CrossRef Google scholar
[11]
Ma X, Agas A, Siddiqui Z, Kim K, Iglesias-Montoro P, Kalluru J, Kumar V, Haorah J. Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioact Mater, 2020, 5: 124
[12]
Huang LC, Wang HC, Chen LH, Ho CY, Hsieh PH, Huang MY, Wu HC, Wang TW. Bioinspired self-assembling peptide hydrogel with proteoglycan-assisted growth factor delivery for therapeutic angiogenesis. Theranostics, 2019, 9: 7072,
CrossRef Google scholar
[13]
Lu J, Yan X, Sun X, Shen X, Yin H, Wang C, Liu Y, Lu C, Fu H, Yang S, Wang Y, Sun X, Zhao L, Lu S, Mikos AG, Peng J, Wang X. Synergistic effects of dual-presenting VEGF- and BDNF-mimetic peptide epitopes from self-assembling peptide hydrogels on peripheral nerve regeneration. Nanoscale, 2019, 11: 19943,
CrossRef Google scholar
[14]
Aye SS, Li R, Boyd-Moss M, Long B, Pavuluri S, Bruggeman K, Wang Y, Barrow CR, Nisbet DR, Williams RJ. Scaffolds formed via the non-equilibrium supramolecular assembly of the synergistic ECM peptides RGD and PHSRN demonstrate improved cell attachment in 3D. Polymers, 2018, 10: 690,
CrossRef Google scholar
[15]
Yang S, Wang C, Zhu J, Lu C, Li H, Chen F, Lu J, Zhang Z, Yan X, Zhao H, Sun X, Zhao L, Liang J, Wang Y, Peng J, Wang X. Self-assembling peptide hydrogels functionalized with LN- and BDNF-mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics, 2020, 10: 8227,
CrossRef Google scholar
[16]
Xia K, Chen Z, Chen J, Xu H, Xu Y, Yang T, Zhang Q. RGD- and VEGF-mimetic peptide epitope-functionalized self-assembling peptide hydrogels promote dentin-pulp complex Regeneration. Int J Nanomedicine, 2020, 15: 6631,
CrossRef Google scholar
[17]
Hao Z, Xu Z, Wang X, Wang Y, Li H, Chen T, Hu Y, Chen R, Huang K, Chen C, Li J. Biophysical stimuli as the fourth pillar of bone tissue engineering. Front Cell Dev Biol, 2021, 9,
CrossRef Google scholar
[18]
Koushik TM, Miller CM, Antunes E. Bone tissue engineering scaffolds: function of multi-material hierarchically structured scaffolds. Adv Healthc Mater, 2023, 12,
CrossRef Google scholar
[19]
Li H, Hao Z, Zhang S, Li B, Wang Y, Wu X, Hu Y, Chen R, Chen T, Li J. “Smart” stimuli-responsive injectable gels for bone tissue engineering application. Macromol Biosci, 2023, 23,
CrossRef Google scholar
[20]
Poudel SB, Bhattarai G, Kwon TH, Lee JC. Biopotentials of collagen scaffold impregnated with plant-cell-derived epidermal growth factor in defective bone healing. Materials, 2023, 16: 3335,
CrossRef Google scholar
[21]
Ong JL, Shiels SM, Pearson J, Karajgar S, Miar S, Chiou G, Appleford MR, Wenke JC, Guda T. Spatial recombinant human bone morphogenetic protein 2 delivery from hydroxyapatite scaffolds sustains bone regeneration in rabbit radius. Tissue Eng Part C Methods, 2022, 28: 363,
CrossRef Google scholar
[22]
Gu JT, Jiao K, Li J, Yan JF, Wang KY, Wang F, Liu Y, Tay FR, Chen JH, Niu LN. Polyphosphate-crosslinked collagen scaffolds for hemostasis and alveolar bone regeneration after tooth extraction. Bioact Mater, 2022, 15: 68
[23]
Chen C, Fu L, Luo Y, Zeng W, Qi X, Wei Y, Chen L, Zhao X, Li D, Tian M, Kang P. Engineered exosome-functionalized extracellular matrix-mimicking hydrogel for promoting bone repair in glucocorticoid-induced osteonecrosis of the femoral head. ACS Appl Mater Interfaces, 2023, 15: 28891,
CrossRef Google scholar
[24]
Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo RO. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials, 2016, 83: 363,
CrossRef Google scholar
[25]
Zhou X, Qian Y, Chen L, Li T, Sun X, Ma X, Wang J, He C. Flowerbed-inspired biomimetic scaffold with rapid internal tissue infiltration and vascularization capacity for bone repair. ACS Nano, 2023, 17: 5140,
CrossRef Google scholar
[26]
Peng Y, Zhuang Y, Liu Y, Le H, Li D, Zhang M, Liu K, Zhang Y, Zuo J, Ding J. Bioinspired gradient scaffolds for osteochondral tissue engineering. Exploration, 2023, 3: 20210043,
CrossRef Google scholar
[27]
Burkus JK, Gornet MF, Dickman CA, Zdeblick TA. Anterior lumbar interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech, 2002, 15: 337,
CrossRef Google scholar
[28]
Wei S, Cai X, Huang J, Xu F, Liu X, Wang Q. Recombinant human BMP-2 for the treatment of open tibial fractures. Orthopedics, 2012, 35,
CrossRef Google scholar
[29]
James AW, LaChaud G, Shen J, Asatrian G, Nguyen V, Zhang X, Ting K, Soo C. A Review of the clinical side effects of bone morphogenetic protein-2. Tissue Eng Part B Rev, 2016, 22: 284,
CrossRef Google scholar
[30]
Zara JN, Siu RK, Zhang X, Shen J, Ngo R, Lee M, Li W, Chiang M, Chung J, Kwak J, Wu BM, Ting K, Soo C. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo. Tissue Eng Part A, 2011, 17: 1389,
CrossRef Google scholar
[31]
Gillman CE, Jayasuriya AC. FDA-approved bone grafts and bone graft substitute devices in bone regeneration. Mater Sci Eng C Mater Biol Appl, 2021, 130,
CrossRef Google scholar
[32]
Fan Y, Hanai JI, Le PT, Bi R, Maridas D, DeMambro V, Figueroa CA, Kir S, Zhou X, Mannstadt M, Baron R, Bronson RT, Horowitz MC, Wu JY, Bilezikian JP, Dempster DW, Rosen CJ, Lanske B. Parathyroid hormone directs bone marrow mesenchymal cell fate. Cell Metab, 2017, 25: 661,
CrossRef Google scholar
[33]
Khan MP, Khan K, Yadav PS, Singh AK, Nag A, Prasahar P, Mittal M, China SP, Tewari MC, Nagar GK, Tewari D, Trivedi AK, Sanyal S, Bandyopadhyay A, Chattopadhyay N. BMP signaling is required for adult skeletal homeostasis and mediates bone anabolic action of parathyroid hormone. Bone, 2016, 92: 132,
CrossRef Google scholar
[34]
Wein MN, Kronenberg HM. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb Perspect Med, 2018, 8,
CrossRef Google scholar
[35]
Che L, Wang Y, Sha D, Li G, Wei Z, Liu C, Yuan Y, Song D. A biomimetic and bioactive scaffold with intelligently pulsatile teriparatide delivery for local and systemic osteoporosis regeneration. Bioact Mater, 2023, 19: 75
[36]
Kuang LJ, Huang JH, Liu YT, Li XL, Yuan Y, Liu CS. Injectable hydrogel with NIR light-responsive, dual-mode PTH release for osteoregeneration in osteoporosis. Adv Func Mater, 2021, 31: 14,
CrossRef Google scholar
[37]
Wang Y, Hao ZW, Zhang YF, Hu YK, Chen TH, Yan FF, Wu MH, Zhang C, Chen RX, Li BH, Wu XX, Li HK, Zheng QX, Guo XD, Liu GH, Zou ZW, Li JF, Cai L. Recombinant PTH modification: A new strategy for a multifunctional CaP material to enhance bone regeneration. Compos B Eng, 2022, 247: 110289,
CrossRef Google scholar
[38]
Wang Y, Hu Y, Lan S, Chen Z, Zhang Y, Guo X, Cai L, Li J. A Recombinant Parathyroid Hormone-Related Peptide Locally Applied in Osteoporotic Bone Defect. Adv Sci (Weinh), 2023, 10,
CrossRef Google scholar
[39]
Yang S, Zhu J, Lu C, Chai Y, Cao Z, Lu J, Zhang Z, Zhao H, Huang YY, Yao S, Kong X, Zhang P, Wang X. Aligned fibrin/functionalized self-assembling peptide interpenetrating nanofiber hydrogel presenting multi-cues promotes peripheral nerve functional recovery. Bioact Mater, 2022, 8: 529
[40]
Rajan N, Habermehl J, Cote MF, Doillon CJ, Mantovani D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat Protoc, 2006, 1: 2753,
CrossRef Google scholar
[41]
Brondijk TH, Bihan D, Farndale RW, Huizinga EG. Implications for collagen I chain registry from the structure of the collagen von Willebrand factor A3 domain complex. Proc Natl Acad Sci U S A, 2012, 109: 5253,
CrossRef Google scholar
[42]
Yokoi H, Kinoshita T, Zhang S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc Natl Acad Sci U S A, 2005, 102: 8414,
CrossRef Google scholar
[43]
Lu L, Parmar MB, Kulka M, Kwan P, Unsworth LD. Self-assembling peptide nanoscaffold that activates human mast cells. ACS Appl Mater Interfaces, 2018, 10: 6107,
CrossRef Google scholar
[44]
Wang J, Zheng J, Zheng Q, Wu Y, Wu B, Huang S, Fang W, Guo X. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells. Mater Sci Eng C Mater Biol Appl, 2015, 46: 140,
CrossRef Google scholar
[45]
Sane SU, Cramer SM, Przybycien TM. A holistic approach to protein secondary structure characterization using amide I band Raman spectroscopy. Anal Biochem, 1999, 269: 255,
CrossRef Google scholar
[46]
Liang B, Huang J, Xu J, Li X, Li J. Local delivery of a novel PTHrPviamesoporous bioactive glass scaffolds to improve bone regeneration in a rat posterolateral spinal fusion model. RSC Adv, 2018, 8: 12484,
CrossRef Google scholar
[47]
Ning Z, Tan B, Chen B, Lau DSA, Wong TM, Sun T, Peng S, Li Z, Lu WW. Precisely controlled delivery of abaloparatide through injectable hydrogel to promote bone regeneration. Macromol Biosci, 2019, 19,
CrossRef Google scholar
[48]
Chan GK, Deckelbaum RA, Bolivar I, Goltzman D, Karaplis AC. PTHrP inhibits adipocyte differentiation by down-regulating PPARγ activity via a MAPK-dependent pathway. Endocrinology, 2001, 142: 4900,
CrossRef Google scholar
[49]
Xie Z, Yan D, Zhou Q, Wu Z, Weng S, Boodhun V, Bai B, Shen Z, Tang J, Chen L, Wang B, Yang L. The fast degradation of β-TCP ceramics facilitates healing of bone defects by the combination of BMP-2 and Teriparatide. Biomed Pharmacother, 2019, 112: 108578,
CrossRef Google scholar
[50]
Henriksen K, Karsdal MA, Martin TJ. Osteoclast-derived coupling factors in bone remodeling. Calcif Tissue Int, 2014, 94: 88,
CrossRef Google scholar
[51]
Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol, 2015, 22: 41,
CrossRef Google scholar
[52]
Chen T, Wang Y, Hao Z, Hu Y, Li J. Parathyroid hormone and its related peptides in bone metabolism. Biochem Pharmacol, 2021, 192,
CrossRef Google scholar
[53]
Silva BC, Costa AG, Cusano NE, Kousteni S, Bilezikian JP. Catabolic and anabolic actions of parathyroid hormone on the skeleton. J Endocrinol Invest, 2011, 34: 801
[54]
Liu H, Chen F, Yufeng Z, Wu P, Yang Z, Zhang S, Xiao L, Deng Z, Cai L, Wu M. Facile fabrication of biomimetic silicified gelatin scaffolds for angiogenesis and bone regeneration by a bioinspired polymer-induced liquid precursor. Mater Design, 2022, 222: 111070,
CrossRef Google scholar
[55]
Zhang J, Tong D, Song H, Ruan R, Sun Y, Lin Y, Wang J, Hou L, Dai J, Ding J, Yang H. Osteoimmunity-regulating biomimetically hierarchical scaffold for augmented bone regeneration. Adv Mater, 2022, 34,
CrossRef Google scholar
[56]
Liu Z, Zhang J, Fu C, Ding J. Osteoimmunity-regulating biomaterials promote bone regeneration. Asian J Pharm Sci, 2023, 18,
CrossRef Google scholar
[57]
Rashid G, Bernheim J, Green J, Benchetrit S. Parathyroid hormone stimulates the endothelial expression of vascular endothelial growth factor. Eur J Clin Invest, 2008, 38: 798,
CrossRef Google scholar
[58]
Rashid G, Bernheim J, Green J, Benchetrit S. Parathyroid hormone stimulates the endothelial nitric oxide synthase through protein kinase A and C pathways. Nephrol Dial Transplant, 2007, 22: 2831,
CrossRef Google scholar
[59]
Towler DA. Skeletal anabolism, PTH, and the bone-vascular axis. J Bone Miner Res, 2011, 26: 2579,
CrossRef Google scholar
[60]
Asatrian G, Chang L, James AW. Muscle pouch implantation: an ectopic bone formation model. Methods Mol Biol, 2014, 1213: 185,
CrossRef Google scholar
[61]
Li J-F, Lin Z-Y, Zheng Q-X, Guo XD, Yang SH, Lu HW, Lan SH. Bone formation in ectopic and osteogenic tissue induced by a novel BMP-2-related peptide combined with rat tail collagen. Biotechnol Bioprocess Eng, 2010, 15: 725,
CrossRef Google scholar
[62]
Li L, Lu H, Zhao Y, Luo J, Yang L, Liu W, He Q. Functionalized cell-free scaffolds for bone wdefect repair inspired by self-healing of bone fractures: a review and new perspectives. Mater Sci Eng C Mater Biol Appl, 2019, 98: 1241,
CrossRef Google scholar
[63]
Xia B, Deng Y, Lv Y, Chen G. Stem cell recruitment based on scaffold features for bone tissue engineering. Biomater Sci, 2021, 9: 1189,
CrossRef Google scholar
Funding
the National Natural Science Foundation of China(81874232); the Key Research and Development Program of Hubei Province(2022BCA052); the Key Research and Development Program of Wuhan City(2023020402010591); the Fundamental Research Funds for the Central Universities(2042023kf0199); the Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University(ZNJC202014)

Accesses

Citations

Detail

Sections
Recommended

/