A Novel L-Cys@Cu MOF Embedding onto Cotton Fiber Surfaces to Exert Excellent Antiviral and Antibacterial Effects

Yuanxiang Xiao, Jingjing Jiang, Rui Cai, Jiajia Fu, Shuangfei Xiang, Shujun Zhao, Feiya Fu, Hongyan Diao, Xiangdong Liu

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (2) : 444-457. DOI: 10.1007/s42765-023-00365-6
Research Article

A Novel L-Cys@Cu MOF Embedding onto Cotton Fiber Surfaces to Exert Excellent Antiviral and Antibacterial Effects

Author information +
History +

Abstract

Unpredictable pandemics are likely to pose a significant global threat in the future, and biologically protective textiles will play critical roles in controlling the spread of pathogens during outbreaks. Herein, we present a novel metal–organic framework (MOF) composed of repeating units of a Cu(II)/(L-Cys)2 complex formed through coordination bonds between Cu(II) and L-Cys, while being interconnected by ionic bonds involving Cu(II) and the carboxylate group of L-Cys. After covalently embedding the MOF nanofibers onto cotton fiber surfaces, the resulting fabrics exhibit remarkable virucidal and antibacterial capabilities. Remarkably, even after 200 friction or 50 laundering cycles, the high antiviral ability to inactivate all phi- ×  174 within 10 min was maintained, and the bacterial reduction rate against E. coli and S. aureus remained nearly at 100%. The remarkable virucidal effect of the L-Cys@Cu MOF structure is elucidated through a series of α-amylase denaturation simulation tests, providing the first experimental demonstration of the antiviral mechanism, whereby MOF nanofibers induce protein denaturation to inactivate viruses. Moreover, cytotoxicity assessments confirm that the fabrics adorned with MOF nanofibers are safe for human skin. These advantages are promising for the development of protective textiles, highlighting the great potential of nanoscience in combating pandemics.

Keywords

Metal–organic framework / Antibacterial fabric / Antiviral fabric / Biologically protective textile / L-cysteine

Cite this article

Download citation ▾
Yuanxiang Xiao, Jingjing Jiang, Rui Cai, Jiajia Fu, Shuangfei Xiang, Shujun Zhao, Feiya Fu, Hongyan Diao, Xiangdong Liu. A Novel L-Cys@Cu MOF Embedding onto Cotton Fiber Surfaces to Exert Excellent Antiviral and Antibacterial Effects. Advanced Fiber Materials, 2024, 6(2): 444‒457 https://doi.org/10.1007/s42765-023-00365-6

References

[1]
Enserink MSARS. Chronology of the epidemic. Science, 2013, 339: 1266,
CrossRef Google scholar
[2]
Cohen J. Ebola outbreak continues despite powerful vaccine. Science, 2019, 364: 223,
CrossRef Google scholar
[3]
Kupferschmidt K. Amid panic, a chance to learn about MERS. Science, 2015, 348: 1183,
CrossRef Google scholar
[4]
Belongia EA, Osterholm MT. COVID-19 and flu, a perfect storm. Science, 2020, 368: 1163,
CrossRef Google scholar
[5]
Wang G, Wang L, Meng Z, Su X, Jia C, Qiao X, Pan S, Chen Y, Cheng Y, Zhu M. Visual detection of COVID-19 from materials aspect. Adv Fiber Mater, 2022, 4: 1304,
CrossRef Google scholar
[6]
Weekly epidemiological update on COVID-19—30 March 2023. World Health Organization. 2023, Accessed 30 March 2023.
[7]
Chughtai AA, Seale H, Macintyre CR. Effectiveness of cloth masks for protection against severe acute respiratory syndrome coronavirus 2. Emerg Infect Dis, 2020, 26: e200948,
CrossRef Google scholar
[8]
Worby CJ, Chang HH. Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic. Nat Commun, 2020, 11: 4049,
CrossRef Google scholar
[9]
Palmieri V, De Maio F, De Spirito M, Papi M. Face masks and nanotechnology: keep the blue side up. Nano Today, 2021, 37: 101077,
CrossRef Google scholar
[10]
Zhou J, Hu Z, Zabihi F, Chen Z, Zhu M. Progress and perspective of antiviral protective material. Adv Fiber Mater, 2020, 2: 123,
CrossRef Google scholar
[11]
Natsathaporn P, Herwig G, Altenried S, Ren Q, Rossi RM, Crespy D, Itel F. Functional fiber membranes with antibacterial properties for face masks. Adv Fiber Mater, 2023, 5: 1519,
CrossRef Google scholar
[12]
Chua MH, Cheng W, Goh SS, Kong J, Li B, Lim JYC, Mao L, Wang S, Xue K, Yang L, Ye E, Zhang K, Cheong WCD, Tan BH, Li Z, Tan BH, Loh XJ. Face masks in the new COVID-19 normal: materials, testing, and perspectives. Research, 2020, 2020: 7286735,
CrossRef Google scholar
[13]
Tunon-Molina A, Takayama K, Redwan EM, Uversky VN, Andres J, Serrano-Aroca A. Protective face masks: current status and future trends. ACS Appl Mater Interfaces, 2021, 13: 56725,
CrossRef Google scholar
[14]
Deng W, Sun Y, Yao X, Subramanian K, Ling C, Wang H, Chopra SS, Xu BB, Wang JX, Chen JF, Wang D, Amancio H, Pramana S, Ye R, Wang S. Masks for COVID-19. Adv Sci, 2022, 9: e2102189,
CrossRef Google scholar
[15]
Doos D, Barach P, Alves NJ, Falvo L, Bona A, Moore M, Cooper DD, Lefort R, Ahmed R. The dangers of reused personal protective equipment: healthcare workers and workstation contamination. J Hosp Infect, 2022, 127: 59,
CrossRef Google scholar
[16]
Uddin MA, Afroj S, Hasan T, Carr C, Novoselov KS, Karim N. Environmental impacts of personal protective clothing used to combat COVID-19. Adv Sustainable Syst, 2022, 6: 2100176,
CrossRef Google scholar
[17]
Yao S, Ramakrishna S, Chen G. Recent advances in metal–organic frameworks based on electrospinning for energy storage. Adv Fiber Mater, 2023, 5: 1592,
CrossRef Google scholar
[18]
Liu X, Zhang Y, Guo X, Pang H. Electrospun metal–organic framework nanofiber membranes for energy storage and environmental protection. Adv Fiber Mater, 2022, 4: 1463,
CrossRef Google scholar
[19]
Pettinari C, Pettinari R, Nicola CD, Tombesi A, Scuri S, Marchetti F. Antimicrobial MOFs. Coord Chem Rev, 2021, 446,
CrossRef Google scholar
[20]
Yan L, Gopal A, Kashif S, Hazelton P, Lan M, Zhang W, Chen X. Metal organic frameworks for antibacterial applications. Chem Eng J, 2022, 435: 134975,
CrossRef Google scholar
[21]
Kumar A, Sharma A, Chen Y, Jones MM, Vanyo ST, Li C, Visser MB, Mahajan SD, Sharma RK, Swihart MT. Copper@ZIF-8 core-shell nanowires for reusable antimicrobial face masks. Adv Funct Mater, 2021, 31: 2008054,
CrossRef Google scholar
[22]
Hadinejad F, Morad H, Jahanshahi M, Zarrabi A, Pazoki-Toroudi H, Mostafavi E. A novel vision of reinforcing nanofibrous masks with metal nanoparticles: antiviral mechanisms investigation. Adv Fiber Mater, 2023, 5: 1273,
CrossRef Google scholar
[23]
Li R, Chen T, Pan X. Metal–organic-framework-based materials for antimicrobial applications. ACS Nano, 2021, 15: 3808,
CrossRef Google scholar
[24]
Zhang Z, Nomura N, Muramoto Y, Ekimoto T, Uemura T, Liu K, Yui M, Kono N, Aoki J, Ikeguchi M, Noda T, Iwata S, Ohto U, Shimizu T. Structure of SARS-CoV-2 membrane protein essential for virus assembly. Nat Commun, 2022, 13: 4399,
CrossRef Google scholar
[25]
Meng L, Yang F, Pang Y, Cao Z, Wu F, Yan D, Liu J. Nanocapping-enabled charge reversal generates cell-enterable endosomal-escapable bacteriophages for intracellular pathogen inhibition. Sci Adv, 2022, 8: eabq2005,
CrossRef Google scholar
[26]
Xu Q, Ke XT, Cai DR, Zhang YY, Fu FY, Endo T, Liu XD. Silver-based, single-sided antibacterial cotton fabrics with improved durability via an L-cysteine binding effect. Cellulose, 2018, 25: 2129,
CrossRef Google scholar
[27]
Xu Q, Li R, Shen L, Xu W, Wang J, Jiang Q, Zhang L, Fu F, Fu Y, Liu X. Enhancing the surface affinity with silver nano-particles for antibacterial cotton fabric by coating carboxymethyl chitosan and L-cysteine. Appl Surf Sci, 2019, 497: 143673,
CrossRef Google scholar
[28]
Xiao Y, Shen G, Zheng W, Fu J, Fu F, Hu X, Jin Z, Liu X. Remarkable durability of the antibacterial function achieved via a coordination effect of Cu(II) ion and chitosan grafted on cotton fibers. Cellulose, 2022, 29: 1003,
CrossRef Google scholar
[29]
Wu M, Zhang X, Zhao Y, Yang C, Jing S, Wu Q, Brozena A, Miller JT, Libretto NJ, Wu T, Bhattacharyya S, Garaga MN, Zhang Y, Qi Y, Greenbaum SG, Briber RM, Yan Y, Hu L. A high-performance hydroxide exchange membrane enabled by Cu2+-crosslinked chitosan. Nat Nanotechnol, 2022, 17: 629,
CrossRef Google scholar
[30]
Li W, Zhang Y, Yu Z, Zhu T, Kang J, Liu K, Li Z, Tan SC. In situ growth of a stable metal–organic framework (MOF) on flexible fabric via a layer-by-layer strategy for versatile applications. ACS Nano, 2022, 16: 14779,
CrossRef Google scholar
[31]
Neufeld MJ, Harding JL, Reynolds MM. Immobilization of metal–organic framework copper(II) benzene-1,3,5-tricarboxylate (CuBTC) onto cotton fabric as a nitric oxide release catalyst. ACS Appl Mater Interfaces, 2015, 7: 26742,
CrossRef Google scholar
[32]
Ma B, Wang S, Liu F, Zhang S, Duan J, Li Z, Kong Y, Sang Y, Liu H, Bu W, Li L. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J Am Chem Soc, 2019, 141: 849,
CrossRef Google scholar
[33]
Ding S, Li P, Zhang T, Wang X. Coordination of copper ion crosslinked composite beads with enhanced toxins adsorption and thin-film nanofibrous composite membrane for realizing the lightweight hemodialysis. Adv Fiber Mater, 2022, 4: 556,
CrossRef Google scholar
[34]
Zhao M, Huang Z, Wang S, Zhang L, Zhou Y. Design of L-cysteine functionalized UiO-66 MOFs for selective adsorption of Hg(II) in aqueous medium. ACS Appl Mater Interfaces, 2019, 11: 46973,
CrossRef Google scholar
[35]
Liang M, Wang F, Liu M, Yu J, Si Y, Ding B. N-halamine functionalized electrospun poly(vinyl alcohol-co-ethylene) nanofibrous membranes with rechargeable antibacterial activity for bioprotective applications. Adv Fiber Mater, 2019, 1: 126,
CrossRef Google scholar
[36]
Wang S, Li J, Cao Y, Gu J, Wang Y, Chen S. Non-leaching, rapid bactericidal and biocompatible polyester fabrics finished with benzophenone terminated N-halamine. Adv Fiber Mater, 2021, 4: 119,
CrossRef Google scholar
[37]
Yao A, Jiao X, Chen D, Li C. Bio-inspired polydopamine-mediated Zr-MOF fabrics for solar photothermal-driven instantaneous detoxification of chemical warfare agent simulants. ACS Appl Mater Interfaces, 2020, 12: 18437,
CrossRef Google scholar
[38]
Rade PP, Giram PS, Shitole AA, Sharma N, Garnaik B. Physicochemical and in vitro antibacterial evaluation of metronidazole loaded eudragit S-100 nanofibrous mats for the intestinal drug delivery. Adv Fiber Mater, 2021, 4: 76,
CrossRef Google scholar
[39]
Wang C, Luo X, Jia Z. Linkage, charge state and layer of L-cysteine on copper surfaces. Colloids Surf B, 2017, 160: 33,
CrossRef Google scholar
[40]
Hulliger J. Chemistry and crystal growth. Angew Chem Int Ed, 1994, 33: 143,
CrossRef Google scholar
[41]
Wang Y, Li L, Liang H, Xing Y, Yan L, Dai P, Gu X, Zhao G, Zhao X. Superstructure of a metal–organic framework derived from microdroplet flow reaction: an intermediate state of crystallization by particle attachment. ACS Nano, 2019, 13: 2901,
CrossRef Google scholar
[42]
Molco M, Laye F, Samperio E, Ziv Sharabani S, Fourman V, Sherman D, Tsotsalas M, Woll C, Lahann J, Sitt A. Performance fabrics obtained by in situ growth of metal–organic frameworks in electrospun fibers. ACS Appl Mater Interfaces, 2021, 13: 12491,
CrossRef Google scholar
[43]
Zhu Y, Xu Z, Yan K, Zhao H, Zhang J. One-step synthesis of CuO–Cu2O heterojunction by flame spray pyrolysis for cathodic photoelectrochemical sensing of L-cysteine. ACS Appl Mater Interfaces, 2017, 9: 40452,
CrossRef Google scholar
[44]
Bu Y, Xu T, Geng S, Fan S, Li Q, Su J. Ferroelectrics-electret synergetic organic artificial synapses with single-polarity driven dynamic reconfigurable modulation. Adv Funct Mater, 2023, 33: 2213741,
CrossRef Google scholar
[45]
Liu X, Wang F, Su J, Zhou Y, Ramakrishna S. Bio-inspired 3D artificial neuromorphic circuits. Adv Funct Mater, 2022, 32: 2113050,
CrossRef Google scholar
[46]
Li W, Liu K, Zhang Y, Guo S, Li Z, Tan SC. A facile strategy to prepare robust self-healable superhydrophobic fabrics with self-cleaning, anti-icing, UV resistance, and antibacterial properties. Chem Eng J, 2022, 446: 137195,
CrossRef Google scholar
[47]
de Godoi FC, Rodriguez-Castellon E, Guibal E, Beppu MM. An XPS study of chromate and vanadate sorption mechanism by chitosan membrane containing copper nanoparticles. Chem Eng J, 2013, 234: 423,
CrossRef Google scholar
[48]
Bhidet V, Salkalachent S, Rastogit A, Raot C, Hegde MS. Depth profile composition studies of thin film CdS: Cu,S solar cells using XPS and AES. J Phys D Appl Phys, 1981, 14: 1647,
CrossRef Google scholar
[49]
Zhao X, Zhang Y, Han J, Jing H, Gao Z, Huang H, Wang Y, Zhong C. Design of “turn-on” fluorescence sensor for L-cysteine based on the instability of metal–organic frameworks. Microporous Mesoporous Mater, 2018, 268: 88,
CrossRef Google scholar
[50]
Wang C, Luo X, Jia Z, Shi Q, Zhu R. Horseradish peroxidase immobilized on copper surfaces and applications in selective electrocatalysis of p-dihydroxybenzene. Appl Surf Sci, 2017, 406: 170,
CrossRef Google scholar
[51]
Stevens Laura J, Pruijssers Andrea J, Lee Hery W, Gordon Calvin J, Tchesnokov Egor P, Gribble J, George Amelia S, Hughes Tia M, Lu X, Li J, Perry Jason K, Porter Danielle P, Cihlar T, Sheahan Timothy P, Baric Ralph S, Götte M, Denison Mark R. Mutations in the SARS-CoV-2 RNA dependent RNA polymerase confer resistance to remdesivir by distinct mechanisms. Sci Transl Med, 2022, 14: eabo0718,
CrossRef Google scholar
[52]
Das K, Aramini JM, Ma LC, Krug RM, Arnold E. Structures of influenza a proteins and insights into antiviral drug targets. Nat Struct Mol Biol, 2010, 17: 530,
CrossRef Google scholar
[53]
Qin T, Ma R, Yin Y, Miao X, Chen S, Fan K, Xi J, Liu Q, Gu Y, Yin Y, Hu J, Liu X, Peng D, Gao L. Catalytic inactivation of influenza virus by iron oxide nanozyme. Theranostics, 2019, 9: 6920,
CrossRef Google scholar
[54]
Cieślak M, Kowalczyk D, Krzyżowska M, Janicka M, Witczak E, Kamińska I. Effect of Cu modified textile structures on antibacterial and antiviral protection. Materials, 2022, 15: 6164,
CrossRef Google scholar
[55]
Zaremba P, Zaremba A, Naumenko K, Yelipashev M, Zahorodnia S. In vitro and in silico studies of the antiviral activity of polyhydrated fullerenes against influenza a (H1N1) virus. Sci Rep, 2023, 13: 10879,
CrossRef Google scholar
[56]
Liu Z, Long H, Wang Y, Shen C, Chen D. Antimicrobial nonwoven fabrics incorporated with levulinic acid and sodium dodecyl sulfate for use in the food industry. Foods, 2022, 11: 2369,
CrossRef Google scholar
[57]
Gopal V, Nilsson-Payant BE, French H, Siegers JY, Yung W-S, Hardwick M, Te Velthuis AJW. Zinc-embedded polyamide fabrics inactivate SARS-CoV-2 and influenza a virus. ACS Appl Mater Interfaces, 2021, 13: 30317,
CrossRef Google scholar
[58]
Di Lorenzo F, Duda KA, Lanzetta R, Silipo A, De Castro C, Molinaro A. A journey from structure to function of bacterial lipopolysaccharides. Chem Rev, 2022, 122: 15767,
CrossRef Google scholar
[59]
May KL, Grabowicz M. The bacterial outer membrane is an evolving antibiotic barrier. Proc Natl Acad Sci, 2018, 115: 8852,
CrossRef Google scholar
[60]
Applerot G, Lellouche J, Lipovsky A, Nitzan Y, Lubart R, Gedanken A, Banin E. Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small, 2012, 8: 3326,
CrossRef Google scholar
[61]
Wang L, Wu Y, Yao S, Ge H, Zhu Y, Chen K, Chen WZ, Zhang Y, Zhu W, Wang HY, Guo Y, Ma PX, Ren PX, Zhang XL, Li HQ, Ali MA, Xu WQ, Jiang HL, Zhang LK, Zhu LL, Ye Y, Shang WJ, Bai F. Discovery of potential small molecular SARS-Cov-2 entry blockers targeting the spike protein. Acta Pharmacol Sin, 2022, 43: 788,
CrossRef Google scholar
[62]
Huang Y, Yang C, Xu XF, Xu W, Liu SW. Structural and functional properties of SARS-Cov-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin, 2020, 41: 1141,
CrossRef Google scholar
[63]
Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-Cov-2 entry into cells. Nat Rev Mol Cell Biol, 2022, 23: 3,
CrossRef Google scholar
Funding
National Natural Science Foundation of China(51803186); Natural Science Foundation of Zhejiang Province(LZ22E030004); High-Level Talents of Zhejiang Province, Outstanding Talent Project(2021R51003); National Key Research and Development Program of China(2021YFA1301101)

Accesses

Citations

Detail

Sections
Recommended

/