Hierarchical Self-Assembly of Injectable Alginate Supramolecular Nanofibril Hydrogels for Hemostasis In Vivo

Linan Wang, Wenwen Hou, Qingxu Zhang, Haiyan Qiao, Min Lin, Zhaocun Shen, Xinchang Pang, Kunyan Sui

Advanced Fiber Materials ›› 2024, Vol. 6 ›› Issue (2) : 489-500. DOI: 10.1007/s42765-023-00355-8
Research Article

Hierarchical Self-Assembly of Injectable Alginate Supramolecular Nanofibril Hydrogels for Hemostasis In Vivo

Author information +
History +

Abstract

Biomass-based supramolecular hydrogels are widely used in the biomedical field due to their favorable biocompatibility and outstanding mechanical properties. However, the preparation of injectable polysaccharide-based hydrogels has proven to be a significant challenge. Here we have employed a simple poor-solvent strategy to prepare alginate supramolecular hydrogels via a hierarchical self-assembly process, including micellization, micelles alignment to form nanofilament, and nanofibrils formation. The alginate supramolecular fibrillar hydrogels exhibit excellent mechanical properties and shear recoverability, meeting the requirements of injectable hydrogels. Furthermore, the presence of alginate and its fibrillar structures imparts superb hemostasis properties and the inherent biocompatibility to these hydrogels. Therefore, this simple and intriguing approach has the potential to develop polysaccharide-based hydrogels for hemostasis in wound within the biomedical fields.

Keywords

Alginate / Hierarchical self-assembly / Supramolecular hydrogels / Hemostasis

Cite this article

Download citation ▾
Linan Wang, Wenwen Hou, Qingxu Zhang, Haiyan Qiao, Min Lin, Zhaocun Shen, Xinchang Pang, Kunyan Sui. Hierarchical Self-Assembly of Injectable Alginate Supramolecular Nanofibril Hydrogels for Hemostasis In Vivo. Advanced Fiber Materials, 2024, 6(2): 489‒500 https://doi.org/10.1007/s42765-023-00355-8

References

[1]
Levin A, Mason TO, Adler-Abramovich L, Buell AK, Meisl G, Galvagnion C, Bram Y, Stratford SA, Dobson CM, Knowles TP, Gazit E. Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nat Commun, 2014, 5: 5219,
CrossRef Google scholar
[2]
Fichman G, Guterman T, Damron J, Adler-Abramovich L, Schmidt J, Kesselman E, Shimon LJW, Ramamoorthy A, Talmon Y, Gazit E. Spontaneous structural transition and crystal formation in minimal supramolecular polymer model. Sci Adv, 2016, 2,
CrossRef Google scholar
[3]
Lehn J-M. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed, 1990, 29: 1304,
CrossRef Google scholar
[4]
Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, Rowan SJ, Weder C. Optically healable supramolecular polymers. Nature, 2011, 472: 334,
CrossRef Google scholar
[5]
Hou J, Liu M, Zhang H, Song Y, Jiang X, Yu A, Jiang L, Su B. Healable green hydrogen bonded networks for circuit repair, wearable sensor and flexible electronic devices. J Mater Chem A, 2017, 5: 13138,
CrossRef Google scholar
[6]
Lokhande G, Carrow JK, Thakur T, Xavier JR, Parani M, Bayless KJ, Gaharwar AK. Nanoengineered injectable hydrogels for wound healing application. Acta Biomater, 2018, 70: 35,
CrossRef Google scholar
[7]
Meng Y, Zou S, Jiang M, Xu X, Tang BZ, Zhang L. Dendritic nanotubes self-assembled from stiff polysaccharides as drug and probe carriers. J Mater Chem B, 2017, 5: 2616,
CrossRef Google scholar
[8]
Sun Y, Zhang X, Wu T, Zhang Z, Yang R, Liu W. YAP-suppressive nanodrug crosslinked self-immunoregulatory polysaccharide injectable hydrogel for attenuating cardiac fibrosis to treat myocardial infarction. Adv Funct Mater, 2023, 33: 2214468,
CrossRef Google scholar
[9]
Cha GD, Kim M, Park OK, Sunwoo SH, Kang T, Lee WH, Nam S, Hyeon T, Choi SH, Kim DH. Minimally-invasive and in-vivo hydrogel patterning method for in situ fabrication of implantable hydrogel devices. Small Methods, 2023, 7: 2300032,
CrossRef Google scholar
[10]
Tan W, Long T, Wan Y, Li B, Xu Z, Zhao L, Mu C, Ge L, Li D. Dual-drug loaded polysaccharide-based self-healing hydrogels with multifunctionality for promoting diabetic wound healing. Carbohyd Polym, 2023, 312,
CrossRef Google scholar
[11]
Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev, 2019, 48: 1642,
CrossRef Google scholar
[12]
Sunwoo SH, Han SI, Joo H, Cha GD, Kim D, Choi SH, Hyeon T, Kim DH. Advances in soft bioelectronics for brain research and clinical neuroengineering. Matter, 2020, 3: 1923,
CrossRef Google scholar
[13]
Liu S, Rao Y, Jang H, Tan P, Lu N. Strategies for body-conformable electronics. Matter, 2022, 5: 1104,
CrossRef Google scholar
[14]
Duan J, Liang X, Cao Y, Wang S, Zhang L. High strength chitosan hydrogels with biocompatibility via new avenue based on constructing nanofibrous architecture. Macromolecules, 2015, 48: 2706,
CrossRef Google scholar
[15]
Jones CD, Kennedy SR, Walker M, Yufit DS, Steed JW. Scrolling of supramolecular lamellae in the hierarchical self-assembly of fibrous gels. Chem, 2017, 3: 603,
CrossRef Google scholar
[16]
Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol, 2003, 21: 1171,
CrossRef Google scholar
[17]
Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science, 2012, 335: 813,
CrossRef Google scholar
[18]
Adler-Abramovich L, Gazit E. The physical properties of supramolecular peptide assemblies: from building block association to technological applications. Chem Soc Rev, 2014, 43: 6881,
CrossRef Google scholar
[19]
Ikezoe Y, Washino G, Uemura T, Kitagawa S, Matsui H. Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nat Mater, 2012, 11: 1081,
CrossRef Google scholar
[20]
Hauser CAE, Maurer-Stroh S, Martins IC. Amyloid-based nanosensors and nanodevices. Chem Soc Rev, 2014, 43: 5326,
CrossRef Google scholar
[21]
Liu Y, Ling S, Wang S, Chen X, Shao Z. Thixotropic silk nanofibril-based hydrogel with extracellular matrix-like structure. Biomater Sci, 2014, 2: 1338,
CrossRef Google scholar
[22]
Chen Z, Liu X, Ding J, Tian Y, Zhang Y, Wei D, Sun J, Luo F, Zhou L, Fan H. Tissue-like electrophysiological electrode interface construction by multiple crosslinked polysaccharide-based hydrogel. Carbohyd Polym, 2022, 296,
CrossRef Google scholar
[23]
Wei P, Yu X, Fang Y, Wang L, Zhang H, Zhu C, Cai J. Strong and tough cellulose hydrogels via solution annealing and dual cross-linking. Small, 2023, 19: 2301204,
CrossRef Google scholar
[24]
Tong C, Jiang S, Ye D, Li K, Liu J, Zeng X, Wu C, Pang J. Enhanced mechanical property and freeze-thaw stability of alkali-induced heat-set konjac glucomannan hydrogel through anchoring interface effects of carboxylated cellulose nanocrystals. Food Hydrocolloid, 2023, 142,
CrossRef Google scholar
[25]
Yanaki T, Norisuye T, Fujita H. Triple helix of Schizophyllum commune polysaccharide in dilute solution. 3. Hydrodynamic properties in water. Macromolecules, 1980, 13: 1462,
CrossRef Google scholar
[26]
Xu S, Lin Y, Huang J, Li Z, Xu X, Zhang L. Construction of high strength hollow fibers by self-assembly of a stiff polysaccharide with short branches in water. J Mater Chem A, 2013, 1: 4198,
CrossRef Google scholar
[27]
Fang Y, Duan B, Lu A, Liu M, Liu H, Xu X, Zhang L. Intermolecular interaction and the extended wormlike chain conformation of chitin in NaOH/urea aqueous solution. Biomacromol, 2015, 16: 1410,
CrossRef Google scholar
[28]
Zhang X, Sheng N, Wang L, Tan Y, Liu C, Xia Y, Nie Z, Sui K. Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater Horiz, 2019, 6: 326,
CrossRef Google scholar
[29]
Zhao C, Zhang C, Kang H, Xia Y, Sui K, Liu R. Gelation of Na-alginate aqueous solution: a study of sodium ion dynamics via NMR relaxometry. Carbohyd Polym, 2017, 169: 206,
CrossRef Google scholar
[30]
Dou X, Zhou Q, Chen X, Tan Y, He X, Lu P, Sui K, Tang BZ, Zhang Y, Yuan WZ. Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate. Biomacromolecules, 2018, 19: 2014,
CrossRef Google scholar
[31]
Cleland RL. Viscometry and sedimentation equilibrium of partially hydrolyzed hyaluronate: comparison with theoretical models of wormlike chains. Biopolymers, 1984, 23: 647,
CrossRef Google scholar
[32]
Mourey T, Le K, Bryan T, Zheng S, Bennett G. Determining persistence length by size-exclusion chromatography. Polymer, 2005, 46: 9033,
CrossRef Google scholar
[33]
Vold IMN, Kristiansen KA, Christensen BE. A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors. Biomacromol, 2006, 7: 2136,
CrossRef Google scholar
[34]
McIntire TM, Brant DA. Imaging of carrageenan macrocycles and amylose using noncontact atomic force microscopy. Int J Biol Macromol, 1999, 26: 303,
CrossRef Google scholar
[35]
Schefer L, Adamcik J, Mezzenga R. Unravelling secondary structure changes on individual anionic polysaccharide chains by atomic force microscopy. Angew Chem Int Ed, 2014, 53: 5376,
CrossRef Google scholar
[36]
Asadi-Korayem M, Akbari-Taemeh M, Mohammadian-Sabet F, Shayesteh A, Daemi H. How does counter-cation substitution influence inter- and intramolecular hydrogen bonding and electrospinnability of alginates. Int J Biol Macromol, 2021, 171: 234,
CrossRef Google scholar
[37]
Xu S, Xu X, Zhang L. Effect of heating on chain conformation of branched β-glucan in water. J Phys Chem B, 2013, 117: 8370,
CrossRef Google scholar
[38]
Schefer L, Adamcik J, Diener M, Mezzenga R. Supramolecular chiral self-assembly and supercoiling behavior of carrageenans at varying salt conditions. Nanoscale, 2015, 7: 16182,
CrossRef Google scholar
[39]
Kirwan LJ, Papastavrou G, Borkovec M, Behrens SH. Imaging the coil-to-globule conformational transition of a weak polyelectrolyte by tuning the polyelectrolyte charge density. Nano Lett, 2004, 4: 149,
CrossRef Google scholar
[40]
Wang J, Liu K, Xing R, Yan X. Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev, 2016, 45: 5589,
CrossRef Google scholar
[41]
Liu Y, Zhang Y, Wang Z, Wang J, Wei K, Chen G, Jiang M. Building nanowires from micelles: hierarchical self-assembly of alternating amphiphilic glycopolypeptide brushes with pendants of high-mannose glycodendron and oligophenylalanine. J Am Chem Soc, 2016, 138: 12387,
CrossRef Google scholar
[42]
Lampel A, McPhee SA, Park HA, Scott GG, Humagain S, Hekstra DR, Yoo B, Frederix PWJM, Li TD, Abzalimov RR, Greenbaum SG, Tuttle T, Hu C, Bettinger CJ, Ulijn RV. Polymeric peptide pigments with sequence-encoded properties. Science, 2017, 356: 1064,
CrossRef Google scholar
[43]
Wang J, Chao J, Liu H, Su S, Wang L, Huang W, Willner I, Fan C. Clamped hybridization chain reactions for the self-assembly of patterned DNA hydrogels. Angew Chem Int Ed, 2017, 56: 2171,
CrossRef Google scholar
[44]
Levin A, Mason TO, Adler-Abramovich L, Buell AK, Meisl G, Galvagnion C, Bram Y, Stratford SA, Dobson CM, Knowles TPJ, Gazit E. Ostwald’s rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers. Nat Commun, 2014, 5: 5219,
CrossRef Google scholar
[45]
Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum, 2004, 29: 688,
CrossRef Google scholar
[46]
Seale R, Morris ER, Rees DA. Interactions of alginates with univalent cations. Carbohyd Res, 1982, 110: 101,
CrossRef Google scholar
[47]
Bakota EL, Wang Y, Danesh FR, Hartgerink JD. Injectable multidomain peptide nanofiber hydrogel as a delivery agent for stem cell secretome. Biomacromol, 2011, 12: 1651,
CrossRef Google scholar
[48]
Dowling MB, Kumar R, Keibler MA, Hess JR, Bochicchio GV, Raghavan SR. A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action. Biomaterials, 2011, 32: 3351,
CrossRef Google scholar
[49]
Li J, Celiz AD, Yang J, Yang Q, Wamala I, Whyte W, Seo BR, Vasilyev NV, Vlassak JJ, Suo Z, Mooney DJ. Tough adhesives for diverse wet surfaces. Science, 2017, 357: 378,
CrossRef Google scholar
[50]
Qiao H, Qi P, Zhang X, Wang L, Tan Y, Luan Z, Xia Y, Li Y, Sui K. Multiple weak h-bonds lead to highly sensitive, stretchable, self-adhesive, and self-healing ionic sensors. ACS Appl Mater Interfaces, 2019, 11: 7755,
CrossRef Google scholar
[51]
Lih E, Lee JS, Park KM, Park KD. Rapidly curable chitosan–PEG hydrogels as tissue adhesives for hemostasis and wound healing. Acta Biomater, 2012, 8: 3261,
CrossRef Google scholar
[52]
Ryu JH, Lee Y, Kong WH, Kim TG, Park TG, Lee H. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromol, 2011, 12: 2653,
CrossRef Google scholar
[53]
Shin M, Park SG, Oh BC, Kim K, Jo S, Lee MS, Oh SS, Hong SH, Shin EC, Kim KS, Kang SW, Lee H. Complete prevention of blood loss with self-sealing haemostatic needles. Nat Mater, 2017, 16: 147,
CrossRef Google scholar
Funding
State Key Laboratory of Bio-Fibers and Eco-Textiles(ZDKT202006)

Accesses

Citations

Detail

Sections
Recommended

/