Multifunctional and Reconfigurable Electronic Fabrics Assisted by Artificial Intelligence for Human Augmentation

Zihan Chen, Wansheng Lin, Cuirong Zhang, Yijing Xu, Chao Wei, Huanqiang Hu, Xinqin Liao, Zhong Chen

Advanced Fiber Materials ›› 2023, Vol. 6 ›› Issue (1) : 229-242. DOI: 10.1007/s42765-023-00350-z
Research Article

Multifunctional and Reconfigurable Electronic Fabrics Assisted by Artificial Intelligence for Human Augmentation

Author information +
History +

Abstract

Noninvasive human augmentation, namely a desirable approach for enhancing the quality of life, can be achieved through wearable electronic devices that interact with the external environment. Wearable electronic devices endure limitations, such as unreliable signal interaction when bent or deformed, excessive wiring requirements, and lack of programmability and multifunctionality. Herein, we report an intelligent and programmable (IP) fabric sensor with bending insensitivity that overcomes these challenges associated with a rapid response time (< 400 μs) and exceptional durability (> 20,000 loading–unloading cycles). A single-layer parallel electrical bilateral structure is utilized to design the IP fabric sensor with reconfigurability and only two electrodes, which caters to the requirement of stable interactions and simple wiring. The multifunctionality of the IP fabric sensor is demonstrated by designing a closed-loop interactive entertainment system, a smart home system, and a user identification and verification system. This integrated system reveals the potential of combining Internet of Things technology and artificial intelligence (AI). Hopefully, the integration of the noninvasive IP fabric sensor with AI will facilitate the advancement of interactive systems for human augmentation.

Keywords

Carbon nanotubes / Fabric sensors / Reconfigurability / Bending insensitivity / Artificial intelligence

Cite this article

Download citation ▾
Zihan Chen, Wansheng Lin, Cuirong Zhang, Yijing Xu, Chao Wei, Huanqiang Hu, Xinqin Liao, Zhong Chen. Multifunctional and Reconfigurable Electronic Fabrics Assisted by Artificial Intelligence for Human Augmentation. Advanced Fiber Materials, 2023, 6(1): 229‒242 https://doi.org/10.1007/s42765-023-00350-z

References

[1.]
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med, 2019, 25: 44,
CrossRef Pubmed Google scholar
[2.]
Zheng Q, Tang Q, Wang ZL, Li Z. Self-powered cardiovascular electronic devices and systems. Nat Rev Cardiol, 2021, 18: 7,
CrossRef Pubmed Google scholar
[3.]
Wang G, Wang L, Meng Z, Su X, Jia C, Qiao X, Pan S, Chen Y, Cheng Y, Zhu M. Visual detection of COVID-19 from materials aspect. Adv Fiber Mater, 2022, 4: 1304, pmcid: 9358106
CrossRef Pubmed Google scholar
[4.]
Azimi S, Golabchi A, Nekookar A, Rabbani S, Amiri MH, Asadi K, Abolhasani MM. Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant. Nano Energy, 2021, 83: 105781,
CrossRef Google scholar
[5.]
Li Q, Nan K, Floch PL, Lin Z, Sheng H, Liu J. Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett, 2019, 19: 5781,
CrossRef Pubmed Google scholar
[6.]
Doudna JA. The promise and challenge of therapeutic genome editing. Nature, 2020, 578: 229, pmcid: 8992613
CrossRef Pubmed Google scholar
[7.]
Wu Y, Zeng J, Roscoe BP, Liu P, Yao Q, Lazzarotto CR, Clement K, Cole MA, Luk K, Baricordi C, Shen AH, Ren C, Esrick EB, Manis JP, Dorfman DM, Williams DA, Biffi A, Brugnara C, Biasco L, Brendel C, Pinello L, Tsai SQ, Wolfe SA, Bauer DE. Highly efficient therapeutic gene editing of human hematopoietic stem cells. Nat Med, 2019, 25: 776, pmcid: 6512986
CrossRef Pubmed Google scholar
[8.]
Lu G, Nishio N, van den Berg NS, Martin BA, Fakurnejad S, van Keulen S, Colevas AD, Thurber GM, Rosenthal EL. Co-administered antibody improves penetration of antibody-dye conjugate into human cancers with implications for antibody-drug conjugates. Nat Commun, 2020, 11: 5667, pmcid: 7652891
CrossRef Pubmed Google scholar
[9.]
Jenssen T, Hartmann A. Post-transplant diabetes mellitus in patients with solid organ transplants. Nat Rev Endocrinol, 2019, 15: 172,
CrossRef Pubmed Google scholar
[10.]
Niu S, Matsuhisa N, Beker L, Li J, Wang S, Wang J, Jiang Y, Yan X, Yun Y, Burnett W, Poon ASY, Tok JBH, Chen X, Bao Z. A wireless body area sensor network based on stretchable passive tags. Nat Electron, 2019, 2: 361,
CrossRef Google scholar
[11.]
Zhang K, Wang J, Liu T, Luo Y, Loh XJ, Chen X. Machine learning-reinforced noninvasive biosensors for healthcare. Adv Healthc Mater, 2021, 10: 2100734,
CrossRef Google scholar
[12.]
Dan X, Cao R, Cao X, Wang Y, Xiong Y, Han J, Luo L, Yang J, Xu N, Sun J, Sun Q, Wang ZL. Whirligig-inspired hybrid nanogenerator for multi-strategy energy harvesting. Adv Fiber Mater, 2023, 5: 362,
CrossRef Google scholar
[13.]
Lin W, Wei C, Yu S, Chen Z, Zhang C, Guo Z, Liao Q, Wang S, Lin M, Zheng Y, Liao X, Chen Z. Programmable and ultrasensitive haptic interfaces enabling closed-loop human–machine interactions. Adv Funct Mater, 2023, 33: 2305919,
CrossRef Google scholar
[14.]
Liao X, Wang W, Wang L, Tang K, Zheng Y. Controllably enhancing stretchability of highly sensitive fiber-based strain sensors for intelligent monitoring. ACS Appl Mater Interfaces, 2018, 11: 2431,
CrossRef Google scholar
[15.]
Mansouri M, Hussherr M-D, Strittmatter T, Buchmann P, Xue S, Camenisch G, Fussenegger M. Smart-watch-programmed green-light-operated percutaneous control of therapeutic transgenes. Nat Commun, 2021, 12: 3388, pmcid: 8184832
CrossRef Pubmed Google scholar
[16.]
Wan C, Cai P, Guo X, Wang M, Matsuhisa N, Yang L, Lv Z, Luo Y, Loh XJ, Chen X. An artificial sensory neuron with visual-haptic fusion. Nat Commun, 2020, 11: 4602, pmcid: 7490423
CrossRef Pubmed Google scholar
[17.]
Liao X, Song W, Zhang X, Yan C, Li T, Ren H, Liu C, Wang Y, Zheng Y. A bioinspired analogous nerve toward artificial intelligence. Nat Commun, 2020, 11: 268, pmcid: 6959309
CrossRef Pubmed Google scholar
[18.]
Ye C, Yang S, Ren J, Dong S, Cao L, Pei Y, Ling S. Electroassisted core-spun triboelectric nanogenerator fabrics for intellisense and artificial intelligence perception. ACS Nano, 2022, 16: 4415,
CrossRef Pubmed Google scholar
[19.]
Shi X, Zuo Y, Zhai P, Shen J, Yang Y, Gao Z, Liao M, Wu J, Wang J, Xu X, Tong Q, Zhang B, Wang B, Sun X, Zhang L, Pei Q, Jin D, Chen P, Peng H. Large-area display textiles integrated with functional systems. Nature, 2021, 591: 240,
CrossRef Pubmed Google scholar
[20.]
Yao M, Zhou R, Yuan M, Wang H, Wang L, Sun H, Fu Y, Xiao R, Wang H, Wang G, Zhu M. Multifunctional semiconducting fibers for visual detection of sarin gas. Adv Fiber Mater, 2023, 5: 1632,
CrossRef Google scholar
[21.]
Li X, Chen L, Yuan S, Tong H, Cheng Q, Zeng H, Wei L, Zhang Q. Stretchable luminescent perovskite-polymer hydrogels for visual-digital wearable strain sensor textiles. Adv Fiber Mater, 2023, 5: 1671,
CrossRef Google scholar
[22.]
Liao X, Song W, Zhang X, Huang H, Wang Y, Zheng Y. Directly printed wearable electronic sensing textiles toward human–machine interfaces. J Mater Chem C, 2018, 6: 12841,
CrossRef Google scholar
[23.]
Yu M, Lyu W, Liao Y, Zhu M. Snakeskin-inspired hierarchical winkled surface for ultradurable superamphiphobic fabrics via short-fluorinated polymer reactive infusion. Adv Fiber Mater, 2023, 5: 543,
CrossRef Google scholar
[24.]
Yin L, Kim KN, Lv J, Tehrani F, Lin M, Lin Z, Moon J-M, Ma J, Yu J, Xu S, Wang J. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat Commun, 2021, 12: 1542, pmcid: 7943583
CrossRef Pubmed Google scholar
[25.]
Zhou Z, Chen K, Li X, Zhang S, Wu Y, Zhou Y, Meng K, Sun C, He Q, Fan W, Fan E, Lin Z, Tan X, Deng W, Yang J, Chen J. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron, 2020, 3: 571,
CrossRef Google scholar
[26.]
Liao X, Wang W, Lin M, Li M, Wu H, Zheng Y. Hierarchically distributed microstructure design of haptic sensors for personalized fingertip mechanosensational manipulation. Mater Horiz, 2018, 5: 920,
CrossRef Google scholar
[27.]
Sundaram S, Kellnhofer P, Li Y, Zhu J-Y, Torralba A, Matusik W. Learning the signatures of the human grasp using a scalable tactile glove. Nature, 2019, 569: 698,
CrossRef Pubmed Google scholar
[28.]
Lin Z, Yang J, Li X, Wu Y, Wei W, Liu J, Chen J, Yang J. Large-scale and washable smart textiles based on triboelectric nanogenerator arrays for self-powered sleeping monitoring. Adv Funct Mater, 2018, 28: 1704112,
CrossRef Google scholar
[29.]
Fan W, He Q, Meng K, Tan X, Zhou Z, Zhang G, Yang J, Wang ZL. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci Adv, 2020, 6: eaay2840, pmcid: 7069695
CrossRef Pubmed Google scholar
[30.]
Pang Y, Xu X, Chen S, Fang Y, Shi X, Deng Y, Wang ZL, Cao C. Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots. Nano Energy, 2022, 96,
CrossRef Google scholar
[31.]
Hwang S, Kang M, Lee A, Bae S, Lee S-K, Lee SH, Lee T, Wang G, Kim T-W. Integration of multiple electronic components on a microfibre toward an emerging electronic textile platform. Nat Commun, 2022, 13: 3173, pmcid: 9178034
CrossRef Pubmed Google scholar
[32.]
Peng J, Snyder GJ. A figure of merit for flexibility. Science, 2019, 366: 690,
CrossRef Pubmed Google scholar
[33.]
Liao X, Liao Q, Yan X, Liang Q, Si H, Li M, Wu H, Cao S, Zhang Y. Flexible and highly sensitive strain sensors fabricated by pencil drawn for wearable monitor. Adv Funct Mater, 2015, 25: 2395,
CrossRef Google scholar
[34.]
Wen F, Sun Z, He T, Shi Q, Zhu M, Zhang Z, Li L, Zhang T, Lee C. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv Sci, 2020, 7: 2000261,
CrossRef Google scholar
[35.]
Zhang Q, Jin T, Cai J, Xu L, He T, Wang T, Tian Y, Li L, Peng Y, Lee C. Wearable triboelectric sensors enabled gait analysis and waist motion capture for IoT-based smart healthcare applications. Adv Sci, 2022, 9: 2103694,
CrossRef Google scholar
[36.]
Wu C, Ding W, Liu R, Wang J, Wang AC, Wang J, Li S, Zi Y, Wang ZL. Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array. Mater Today, 2018, 21: 216,
CrossRef Google scholar
[37.]
Maharjan P, Shrestha K, Bhatta T, Cho H, Park C, Salauddin M, Rahman MT, Rana SS, Lee S, Park JY. Keystroke dynamics based hybrid nanogenerators for biometric authentication and identification using artificial intelligence. Adv Sci, 2021, 8: 2100711,
CrossRef Google scholar
Funding
National Natural Science Foundation of China(52202117); Natural Science Foundation of Fujian Province(2022J01065); Collaborative Innovation Platform Project of Fu-Xia-Quan National Independent Innovation Demonstration Zone(3502ZCQXT2022005); Fundamental Research Funds for the Central Universities(20720220075)

Accesses

Citations

Detail

Sections
Recommended

/