Pressure Regulated Printing of Semiliquid Metal on Electrospinning Film Enables Breathable and Waterproof Wearable Electronics

Rui Guo, Tianyu Li, Chengjie Jiang, Hui Zong, Xueting Li, Chunxue Wan, Haixia Yu, Xian Huang

Advanced Fiber Materials ›› 2023, Vol. 6 ›› Issue (2) : 354-366. DOI: 10.1007/s42765-023-00343-y
Research Article

Pressure Regulated Printing of Semiliquid Metal on Electrospinning Film Enables Breathable and Waterproof Wearable Electronics

Author information +
History +

Abstract

Application of liquid metals and electrospun nanofibers offer a promising solution to insufficient resilience and human comfort of wearable electronics. However, a sustainable manufacturing process is hindered by the low surface tension of liquid metal, and it's poor attachment to the surface of the fabric. This research reveals that tuning the pressure can control the adhesion of semiliquid metal (SLM) on substrates with varying roughness to achieve selective adhesion. Furthermore, a simple and rapid (30 s) fabrication method based on selective adhesion and low mobility of SLM is presented for preparing a multilayered monitoring device capable of measuring human body temperature and ECG signals for 24 h. This device exhibits excellent air permeability of 311.1 g·m−2·h−1, water resistance (washing for 120 min). Our novel approach can inspire the development of methods for printing liquid metal circuits on roughness substrates and enable the practical use of waterproof and breathable wearable electronic devices in the future.

Keywords

Wearable electronics / Liquid metal / Air permeability / Water resistance / Multilayer circuits

Cite this article

Download citation ▾
Rui Guo, Tianyu Li, Chengjie Jiang, Hui Zong, Xueting Li, Chunxue Wan, Haixia Yu, Xian Huang. Pressure Regulated Printing of Semiliquid Metal on Electrospinning Film Enables Breathable and Waterproof Wearable Electronics. Advanced Fiber Materials, 2023, 6(2): 354‒366 https://doi.org/10.1007/s42765-023-00343-y

References

[1]
Wang P, Yu W, Li G, Meng C, Guo S. Printable, flexible, breathable and sweatproof bifunctional sensors based on an all-nanofiber platform for fully decoupled pressure–temperature sensing application. Chem Eng J, 2023, 452,
CrossRef Google scholar
[2]
Hu XR, Huang T, Liu ZD, Wang G, Chen D, Guo QL, Yang SW, Jin ZW, Lee JM, Ding GQ. Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors. J Mater Chem A, 2020, 8: 14778,
CrossRef Google scholar
[3]
Min H, Jang S, Kim D, Kim J, Baik S, Chun S, Pang C. Highly air/water-permeable hierarchical mesh architectures for stretchable underwater electronic skin patches. ACS Appl Mater Interfaces, 2020, 12: 14425,
CrossRef Google scholar
[4]
Sun N, Wang GG, Zhao HX, Cai YW, Li JZ, Li GZ, Zhang XN, Wang BL, Han JC, Wang YH, Yang Y. Waterproof, breathable and washable triboelectric nanogenerator based on electrospun nanofiber films for wearable electronics. Nano Energy, 2021, 90,
CrossRef Google scholar
[5]
Feng W, Chen Y, Wang W, Yu D. A waterproof and breathable textile pressure sensor with high sensitivity based on PVDF/ZnO hierarchical structure. Colloids Surf A, 2022, 633,
CrossRef Google scholar
[6]
Sala de Medeiros M, Goswami D, Chanci D, Moreno C, Martinez RV. Washable, breathable, and stretchable e-textiles wirelessly powered by omniphobic silk-based coils. Nano Energy, 2021, 87,
CrossRef Google scholar
[7]
Yin FF, Guo YJ, Li H, Yue WJ, Zhang CW, Chen D, Geng W, Li Y, Gao S, Shen GZ. A waterproof and breathable Cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Res, 2022, 15: 9341,
CrossRef Google scholar
[8]
Ma YL, Ouyang JY, Raza T, Li P, Jian AJ, Li ZQ, Liu H, Chen M, Zhang XJ, Qu LJ, Tian MW, Tao GM. Flexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondo. Nano Energy, 2021, 85,
CrossRef Google scholar
[9]
Yang S, Liu S, Ding XJ, Zhu B, Shi JD, Yang B, Liu SR, Chen W, Tao XM. Permeable and washable electronics based on polyamide fibrous membrane for wearable applications. Compos Sci Technol, 2021, 207,
CrossRef Google scholar
[10]
Shi X, Zuo Y, Zhai P, Shen JH, Yang YYW, Gao Z, Liao M, Wu JX, Wang JW, Xu XJ, Tong Q, Zhang B, Wang BJ, Sun XM, Zhang LH, Pei QB, Jin DY, Chen PN, Peng HS. Large-area display textiles integrated with functional systems. Nature, 2021, 591: 240,
CrossRef Google scholar
[11]
Taylor LW, Williams SM, Yan JS, Dewey OS, Vitale F, Pasquali M. Washable, sewable, all-carbon electrodes and signal wires for electronic clothing. Nano Lett, 2021, 21: 7093,
CrossRef Google scholar
[12]
Yang W, Li NW, Zhao SY, Yuan ZQ, Wang JN, Du XY, Wang B, Cao R, Li XY, Xu WH, Wang ZL, Li CJ. A breathable and screen-printed pressure sensor based on nanofiber membranes for electronic skins. Adv Mater Technol, 2018, 3: 1700241,
CrossRef Google scholar
[13]
Zhang HQ, He RY, Liu H, Niu Y, Li ZD, Han F, Li J, Zhang XW, Xu F. A fully integrated wearable electronic device with breathable and washable properties for long-term health monitoring. Sens Actuators A Phys, 2021, 322,
CrossRef Google scholar
[14]
He JM, Shi F, Liu QH, Pang YJ, He D, Sun WC, Peng L, Yang J, Qu MN. Wearable superhydrophobic PPy/MXene pressure sensor based on cotton fabric with superior sensitivity for human detection and information transmission. Colloids Surf A Physicochem Eng Asp, 2022, 642,
CrossRef Google scholar
[15]
Luo JC, Gao SJ, Luo H, Wang L, Huang XW, Guo Z, Lai XJ, Lin LW, Li RKY, Gao JF. Superhydrophobic and breathable smart MXene-based textile for multifunctional wearable sensing electronics. Chem Eng J, 2021, 406,
CrossRef Google scholar
[16]
Zhao ZZ, Huang QY, Yan C, Liu YD, Zeng XW, Wei XD, Hu YF, Zheng ZJ. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy, 2020, 70,
CrossRef Google scholar
[17]
Du PB, Zhang JP, Wang J, Cai ZS, Ge FY. A washable and breathable metallized fabric designed by silane bionic. Colloids Surf A Physicochem Eng Asp, 2022, 637,
CrossRef Google scholar
[18]
Liang XP, Zhu MJ, Li HF, Dou JX, Jian MQ, Xia KL, Li S, Zhang YY. Hydrophilic, breathable, and washable graphene decorated textile assisted by silk sericin for integrated multimodal smart wearables. Adv Funct Mater, 2022, 32: 202200162,
CrossRef Google scholar
[19]
Oh J, Jang SG, Moon S, Kim J, Park HK, Kim HS, Park SM, Jeong U. Air-permeable waterproofing electrocardiogram patch to monitor full-day activities for multiple days. Adv Healthc Mater, 2022, 11: 2102703,
CrossRef Google scholar
[20]
Sala de Medeiros M, Chanci D, Moreno C, Goswami D, Martinez RV. Waterproof, breathable, and antibacterial self-powered e-textiles based on omniphobic triboelectric nanogenerators. Adv Funct Mater, 2019, 29: 1904350,
CrossRef Google scholar
[21]
Tian B, Fang YH, Liang J, Zheng K, Guo PW, Zhang XY, Wu YFS, Liu Q, Huang ZD, Cao CY, Wu W. Fully printed stretchable and multifunctional e-textiles for aesthetic wearable electronic systems. Small, 2022, 18: 2107298,
CrossRef Google scholar
[22]
Liu HZ, Li HG, Wang ZC, Wei X, Zhu HJ, Sun MZ, Lin Y, Xu LZ. Robust and multifunctional Kirigami electronics with a tough and permeable aramid nanofiber framework. Adv Mater, 2022, 34: 2207350,
CrossRef Google scholar
[23]
Yan XL, Chen S, Zhang GY, Shi W, Peng ZF, Liu ZL, Chen YZ, Huang YH, Liu L. Highly breathable, surface-hydrophobic and wet-adhesive silk based epidermal electrode for long-term electrophysiological monitoring. Compos Sci Technol, 2022, 230,
CrossRef Google scholar
[24]
Ye ZL, Ling Y, Yang MY, Xu YD, Zhu L, Yan Z, Chen PY. A breathable, reusable, and zero-power smart face mask for wireless cough and mask-wearing monitoring. ACS Nano, 2022, 16: 5874,
CrossRef Google scholar
[25]
Li Y, Rodriguez-Serrano AF, Yeung SY, Hsing IM. Highly stretchable and skin adhesive soft bioelectronic patch for long-term ambulatory electrocardiography monitoring. Adv Mater Technol, 2022, 7: 202101435
[26]
Zhang C, Li Z, Li H, Yang Q, Wang H, Shan C, Zhang J, Hou X, Chen F. Femtosecond laser-induced supermetalphobicity for design and fabrication of flexible tactile electronic skin sensor. ACS Appl Mater Interfaces, 2022, 14: 38328,
CrossRef Google scholar
[27]
Zhuang Q, Ma Z, Gao Y, Zhang Y, Wang S, Lu X, Hu H, Cheung C, Huang Q, Zheng Z. Liquid–metal-superlyophilic and conductivity–strain-enhancing scaffold for permeable superelastic conductors. Adv Funct Mater, 2021, 31: 2105587,
CrossRef Google scholar
[28]
Dong JC, Peng YD, Pu L, Chang KQ, Li L, Zhang C, Ma PM, Huang YP, Liu TX. Perspiration-wicking and luminescent on-skin electronics based on ultrastretchable janus e-textiles. Nano Lett, 2022, 22: 7597,
CrossRef Google scholar
[29]
Guo R, Yao SY, Sun XY, Liu J. Semi-liquid metal and adhesion-selection enabled rolling and transfer (SMART) printing: a general method towards fast fabrication of flexible electronics. Sci China Mater, 2019, 62: 982,
CrossRef Google scholar
[30]
Guo R, Li TY, Wu ZY, Wan CX, Niu J, Huo WX, Yu HX, Huang X. Thermal transfer-enabled rapid printing of liquid metal circuits on multiple substrates. ACS Appl Mater Interfaces, 2022, 14: 37028,
CrossRef Google scholar
[31]
Wang H, Li R, Cao Y, Chen S, Yuan B, Zhu X, Cheng J, Duan M, Liu J. Liquid Metal Fibers. Adv Fiber Mater, 2022, 4: 987,
CrossRef Google scholar
[32]
Yi P, Zou HH, Yu YH, Li XF, Li ZY, Deng G, Chen CY, Fang M, He JZ, Sun X, Liu XF, Shui JL, Yu RH. MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles. ACS Nano, 2022, 16: 14490,
CrossRef Google scholar
[33]
Lin RZ, Kim HJ, Achavananthadith S, Xiong Z, Lee JKW, Kong YL, Ho JS. Digitally-embroidered liquid metal electronic textiles for wearable wireless systems. Nat Commun, 2022, 13: 2190,
CrossRef Google scholar
[34]
Qi XJ, Zhao HT, Wang LH, Sun FQ, Ye XR, Zhang XJ, Tian MW, Qu LJ. Underwater sensing and warming E-textiles with reversible liquid metal electronics. Chem Eng J, 2022, 437,
CrossRef Google scholar
[35]
Guo R, Wang HM, Sun XY, Yao SY, Chang H, Wang HZ, Liu J, Zhang YY. Semiliquid metal enabled highly conductive wearable electronics for smart fabrics. ACS Appl Mater Interfaces, 2019, 11: 30019,
CrossRef Google scholar
[36]
Li BM, Reese BL, Ingram K, Huddleston ME, Jenkins M, Zaets A, Reuter M, Grogg MW, Nelson MT, Zhou Y, Ju B, Sennik B, Farrell ZJ, Jur JS, Tabor CE. Textile-integrated liquid metal electrodes for electrophysiological monitoring. Adv Healthc Mater, 2022, 11: 2200745,
CrossRef Google scholar
[37]
Li YY, Wang SL, Zhang JX, Ma XH, Cao ST, Sun YP, Feng SX, Fang T, Kong DS. A highly stretchable and permeable liquid metal micromesh conductor by physical deposition for epidermal electronics. ACS Appl Mater Interfaces, 2022, 14: 13713,
CrossRef Google scholar
[38]
Yang XQ, Wang SQ, Liu MY, Li LH, Zhao YY, Wang YF, Bai YY, Lu QF, Xiong ZP, Feng SM, Zhang T. All-nanofiber-based janus epidermal electrode with directional sweat permeability for artifact-free biopotential monitoring. Small, 2022, 18: 202106477
[39]
Wang M, Ma C, Uzabakiriho PC, Chen X, Chen ZR, Cheng Y, Wang ZR, Zhao G. Stencil printing of liquid metal upon electrospun nanofibers enables high-performance flexible electronics. ACS Nano, 2021, 15: 19364,
CrossRef Google scholar
[40]
Ma ZJ, Huang QY, Xu Q, Zhuang QN, Zhao X, Yang YH, Qiu H, Yang ZL, Wang C, Chai Y, Zheng ZJ. Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nat Mater, 2021, 20: 859,
CrossRef Google scholar
[41]
Guo R, Zhen Y, Huang X, Liu J. Spatially selective adhesion enabled transfer printing of liquid metal for 3D electronic circuits. Appl Mater Today, 2021, 25,
CrossRef Google scholar
[42]
Zhang S, Wang B, Jiang JJ, Wu K, Guo CF, Wu ZG. High-fidelity conformal printing of 3d liquid alloy circuits for soft electronics. ACS Appl Mater Interfaces, 2019, 11: 7148,
CrossRef Google scholar
Funding
the Key Research and Development Program of Zhejiang Province(2021C05007-2); the National Natural Science Foundation of China(52121002)

Accesses

Citations

Detail

Sections
Recommended

/