Iridium-Cluster-Implanted Ruthenium Phosphide Electrocatalyst for Hydrogen Evolution Reaction

Kyounghoon Jung, Dwi Sakti Aldianto Pratama, Andi Haryanto, Jin Il Jang, Hyung Min Kim, Jae-Chan Kim, Chan Woo Lee, Dong-Wan Kim

Advanced Fiber Materials ›› 2023, Vol. 6 ›› Issue (1) : 158-169. DOI: 10.1007/s42765-023-00342-z

Iridium-Cluster-Implanted Ruthenium Phosphide Electrocatalyst for Hydrogen Evolution Reaction

Author information +
History +

Abstract

Ruthenium phosphide is a promising catalyst for hydrogen evolution due to its cost-effectiveness compared to platinum. However it faces the challenge of having a high binding energy for hydrogen intermediates. In this study, we demonstrate that the incorporation of iridium in ruthenium phosphides lowers the binding energy of hydrogen intermediates, thereby controlling the overpotential and Tafel slope of hydrogen evolution. When the Ir content was doped at 3 at.%, the catalyst achieved an overpotential of 33 mV and a Tafel slope of 33 mV dec−1 under acidic conditions, which are similar to those of the benchmark Pt/C catalyst. In situ Raman spectroscopy and density functional theory (DFT) calculations suggest that the enhanced catalytic activity originates from the near-neutral Gibbs free energy of hydrogen adsorption on the hollow site of the iridium cluster implanted onto ruthenium phosphide.

Keywords

Water electrolysis / Ruthenium phosphide / Iridium substitution / Electronic structure / Hydrogen evolution reaction / Electrospinning

Cite this article

Download citation ▾
Kyounghoon Jung, Dwi Sakti Aldianto Pratama, Andi Haryanto, Jin Il Jang, Hyung Min Kim, Jae-Chan Kim, Chan Woo Lee, Dong-Wan Kim. Iridium-Cluster-Implanted Ruthenium Phosphide Electrocatalyst for Hydrogen Evolution Reaction. Advanced Fiber Materials, 2023, 6(1): 158‒169 https://doi.org/10.1007/s42765-023-00342-z

References

[1]
Esposito DV, Hunt ST, Kimmel YC, Chen JG. A new class of electrocatalysts for hydrogen production from water electrolysis: metal monolayers supported on low-cost transition metal carbides. J Am Chem Soc, 2012, 134: 3025,
CrossRef Google scholar
[2]
Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A, 2015, 3: 14942,
CrossRef Google scholar
[3]
Yang Y, Yu Y, Li J, Chen Q, Du Y, Rao P, Li R, Jia C, Kang Z, Deng P. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett, 2021, 13: 1,
CrossRef Google scholar
[4]
Bae S-Y, Mahmood J, Jeon I-Y, Baek J-B. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz, 2020, 5: 43,
CrossRef Google scholar
[5]
Xiao P, Chen W, Wang X. A review of phosphide-based materials for electrocatalytic hydrogen evolution. Adv Energy Mater, 2015, 5: 1500985,
CrossRef Google scholar
[6]
Kumar A, Kim I-H, Mathur L, Kim H-S, Song S-J. Design of tin polyphosphate for hydrogen evolution reaction and supercapacitor applications. J Korean Ceram Soc, 2021, 58: 688,
CrossRef Google scholar
[7]
Wang Y, Liu Z, Liu H, Suen NT, Yu X, Feng L. Electrochemical hydrogen evolution reaction efficiently catalyzed by Ru2P nanoparticles. Chemsuschem, 2018, 11: 2724,
CrossRef Google scholar
[8]
Liu T, Wang J, Zhong C, Lu S, Yang W, Liu J, Hu W, Li CM. Benchmarking three ruthenium phosphide phases for electrocatalysis of the hydrogen evolution reaction: experimental and theoretical insights. Chem Eur J, 2019, 25: 7826,
CrossRef Google scholar
[9]
Cherevko S, Geiger S, Kasian O, Kulyk N, Grote J-P, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Ludwig A. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: a comparative study on activity and stability. Catal Today, 2016, 262: 170,
CrossRef Google scholar
[10]
Bhunia K, Chandra M, Sharma SK, Pradhan D, Kim S-J. A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coord Chem Rev, 2023, 478: 214956,
CrossRef Google scholar
[11]
Jiang X, Jang H, Liu S, Li Z, Kim MG, Li C, Qin Q, Liu X, Cho J. The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution. Angew Chem Int Ed, 2021, 60: 4110,
CrossRef Google scholar
[12]
Wang P, Zhang X, Zhang J, Wan S, Guo S, Lu G, Yao J, Huang X. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat Commun, 2017, 8: 14580,
CrossRef Google scholar
[13]
Roy SB, Moon S, Patil A, Rehman MA, Yoo S, Seo Y, Park JH, Kang K, Jun SC. Tuning the band (p and d) center and enhancing the active sites by nitrogen (N) doping on iridium diphosphide (IrP2) for accelerating pH-universal water electrolysis. Appl Catal B Environ, 2022, 319: 121906,
CrossRef Google scholar
[14]
Chen D, Yu R, Lu R, Pu Z, Wang P, Zhu J, Ji P, Wu D, Wu J, Zhao Y, Kou Z, Yu J, Mu S. Tunable Ru-Ru2P heterostructures with charge redistribution for efficient pH-universal hydrogen evolution. InfoMater, 2022, 4: e12287,
CrossRef Google scholar
[15]
Zhu J, Li S, Xiao M, Zhao X, Li G, Bai Z, Li M, Hu Y, Feng R, Liu W. Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy, 2020, 77: 105212,
CrossRef Google scholar
[16]
Yang D, Li P, Gao X-Y, Han J, Liu Z-Y, Yang Y-P, Yang J-H. Modulating surface segregation of Ni2P-Ru2P/CCG nanoparticles for boosting hydrogen evolution reaction in pH-universal. Chem Eng J, 2022, 432: 134422,
CrossRef Google scholar
[17]
Deng Y, Liu Z, Wang A, Sun D, Chen Y, Yang L, Pang J, Li H, Li H, Liu H. Oxygen-incorporated MoX (X: S, Se or P) nanosheets via universal and controlled electrochemical anodic activation for enhanced hydrogen evolution activity. Nano Energy, 2019, 62: 338,
CrossRef Google scholar
[18]
Chen Y, Wang D, Meng T, Xing Z, Yang X. Modulating the electronic structure by ruthenium doping endows cobalt phosphide nanowires with enhanced alkaline hydrogen evolution activity. ACS Appl Energy Mater, 2022, 5: 697,
CrossRef Google scholar
[19]
Zhang X-L, Yu P-C, Su X-Z, Hu S-J, Shi L, Wang Y-H, Yang P-P, Gao F-Y, Wu Z-Z, Chi L-P. Efficient acidic hydrogen evolution in proton exchange membrane electrolyzers over a sulfur-doped marcasite-type electrocatalyst. Sci Adv, 2023, 9: eadh2885,
CrossRef Google scholar
[20]
Sun X, Liu F, Chen X, Li C, Yu J, Pan M. Iridium-doped ZIFs-derived porous carbon-coated IrCo alloy as competent bifunctional catalyst for overall water splitting in acid medium. Electrochim Acta, 2019, 307: 206,
CrossRef Google scholar
[21]
Kuttiyiel KA, Sasaki K, Chen W-F, Su D, Adzic RR. Core–shell, hollow-structured iridium–nickel nitride nanoparticles for the hydrogen evolution reaction. J Mater Chem A, 2014, 2: 591,
CrossRef Google scholar
[22]
Jiang P, Huang H, Diao J, Gong S, Chen S, Lu J, Wang C, Sun Z, Xia G, Yang K. Improving electrocatalytic activity of iridium for hydrogen evolution at high current densities above 1000 mA cm−2. Appl Catal B Environ, 2019, 258: 117965,
CrossRef Google scholar
[23]
Cai J, Song Y, Zang Y, Niu S, Wu Y, Xie Y, Zheng X, Liu Y, Lin Y, Liu X. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci Adv, 2020, 6: eaaw8113,
CrossRef Google scholar
[24]
Seo H, Cho KH, Ha H, Park S, Hong JS, Jin K, Nam KT, Seo H, Cho KH, Ha H. Water oxidation mechanism for 3d transition metal oxide catalysts under neutral condition. J Korean Ceram Soc, 2017, 54: 1,
CrossRef Google scholar
[25]
Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci, 1973, 241: 20,
CrossRef Google scholar
[26]
Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys-Condens Matter, 2009, 21: 395502,
CrossRef Google scholar
[27]
Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M. Advanced capabilities for materials modelling with Quantum ESPRESSO. J Phys-Condens Matter, 2017, 29: 465901,
CrossRef Google scholar
[28]
Virtual Lab. Inc. MS. 2017. https://www.materialssquare.com.
[29]
Ernzerhof M, Perdew JP. Generalized gradient approximation to the angle-and system-averaged exchange hole. J Chem Phys, 1998, 109: 3313,
CrossRef Google scholar
[30]
Nørskov JK, Bligaard T, Logadottir A, Kitchin J, Chen JG, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution. J Electrochem Soc, 2005, 152: J23,
CrossRef Google scholar
[31]
Bhattacharjee S, Waghmare UV, Lee S-C. An improved d-band model of the catalytic activity of magnetic transition metal surfaces. Sci Rep, 2016, 6: 35916,
CrossRef Google scholar
[32]
ElementData, Wolfram Language function, Wolfram Research, https://reference.wolfram.com/language/ref/ElementData.html updated 2014. (2007).
[33]
Zhao R, Liu C, Zhang X, Zhu X, Wei P, Ji L, Guo Y, Gao S, Luo Y, Wang Z, Sun X. An ultrasmall Ru2P nanoparticles–reduced graphene oxide hybrid: an efficient electrocatalyst for NH3 synthesis under ambient conditions. J Mater Chem A, 2020, 8: 77,
CrossRef Google scholar
[34]
Su L, Jin Y, Gong D, Ge X, Zhang W, Fan X, Luo W. The role of discrepant reactive intermediates on Ru-Ru2P heterostructure for pH-universal hydrogen oxidation reaction. Angew Chem Int Ed, 2023, 135: e202215585,
CrossRef Google scholar
[35]
Liu T, Feng B, Wu X, Niu Y, Hu W, Li CM. Ru2P nanoparticle decorated P/N-doped carbon nanofibers on carbon cloth as a robust hierarchical electrocatalyst with platinum-comparable activity toward hydrogen evolution. ACS Appl Energy Mater, 2018, 1: 3143,
CrossRef Google scholar
[36]
Vanni M, Provinciali G, Calvo FD, Carignani E, Dreyfuss S, Mézailles N, Mio AM, Nicotra G, Caporali S, Borsacchi S. Ru-P nanoalloy from elemental phosphorus as P-source: synthesis, characterization and catalytic evaluation. ChemCatChem, 2022, 14: e202200685,
CrossRef Google scholar
[37]
Yu W-L, Chi J-Q, Dong B. Reduction tuning of ultrathin carbon shell armor covering IrP2 for accelerated hydrogen evolution kinetics with Pt-like performance. J Mater Chem A, 2021, 9: 2195,
CrossRef Google scholar
[38]
Yang Y, Yang P, Zhou L, He R, Hao Y, Wang J, Qiu R, Zhao X, Yang L. Electrospun IrP2-carbon nanofibers for hydrogen evolution reaction in alkaline medium. Appl Surf Sci, 2021, 565: 150461,
CrossRef Google scholar
[39]
Pu Z, Zhao J, Amiinu IS, Li W, Wang M, He D, Mu S. A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction. Energy Environ Sci, 2019, 12: 952,
CrossRef Google scholar
[40]
Shinagawa T, Garcia-Esparza AT, Takanabe K. Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep, 2015, 5: 13801,
CrossRef Google scholar
[41]
Gao Y, Chen Z, Zhao Y, Yu W, Jiang X, He M, Li Z, Ma T, Wu Z, Wang L. Facile synthesis of MoP-Ru2P on porous N, P co-doped carbon for efficiently electrocatalytic hydrogen evolution reaction in full pH range. Appl Catal B Environ, 2022, 303: 120879,
CrossRef Google scholar
[42]
An L, Bai L, Sun Y, Tang L, Ma L, Guo J, Liu Q, Zhang X. Ru2P particles decorated Ni2P nanosheet as efficient and pH-universal material for hydrogen evolution. Appl Surf Sci, 2020, 520: 146363,
CrossRef Google scholar
[43]
Miao H, Zhang D, Shi Y, Wu X, Zhang W, Chen X, Lai J, Wang L. Ultrasmall noble metal doped Ru2P@Ru/CNT as high-performance hydrogen evolution catalysts. ACS Sustain Chem Eng, 2021, 9: 15063,
CrossRef Google scholar
[44]
Li Y, Chu F, Bu Y, Kong Y, Tao Y, Zhou X, Yu H, Yu J, Tang L, Qin Y. Controllable fabrication of uniform ruthenium phosphide nanocrystals for the hydrogen evolution reaction. Chem Commun, 2019, 55: 7828,
CrossRef Google scholar
[45]
Chang Q, Ma J, Zhu Y, Li Z, Xu D, Duan X, Peng W, Li Y, Zhang G, Zhang F. Controllable synthesis of ruthenium phosphides (RuP and RuP2) for pH-universal hydrogen evolution reaction. ACS Sustain Chem Eng, 2018, 6: 6388,
CrossRef Google scholar
[46]
Chi J-Q, Gao W-K, Lin J-H, Dong B, Yan K-L, Qin J-F, Liu B, Chai Y-M, Liu C-G. Hydrogen evolution activity of ruthenium phosphides encapsulated in nitrogen- and phosphorous-codoped hollow carbon nanospheres. Chemsuschem, 2018, 11: 743,
CrossRef Google scholar
[47]
Luo Q, Xu C, Chen Q, Wu J, Wang Y, Zhang Y, Fan G. Synthesis of ultrafine ruthenium phosphide nanoparticles and nitrogen/phosphorus dual-doped carbon hybrids as advanced electrocatalysts for all-pH hydrogen evolution reaction. Int J Hydrogen Energy, 2019, 44: 25632,
CrossRef Google scholar
[48]
Luo W, Wang Y, Li X, Cheng C. RuP nanoparticles on ordered macroporous hollow nitrogen-doped carbon spheres for efficient hydrogen evolution reaction. Nanotechnology, 2020, 31: 295401,
CrossRef Google scholar
[49]
Cheng M, Geng H, Yang Y, Zhang Y, Li CC. Optimization of the hydrogen-adsorption free energy of Ru-based catalysts towards high-efficiency hydrogen evolution reaction at all pH. Chem Eur J, 2019, 25: 8579,
CrossRef Google scholar
[50]
Jin X, Jang H, Jarulertwathana N, Kim MG, Hwang S-J. Atomically thin holey two-dimensional Ru2P nanosheets for enhanced hydrogen evolution electrocatalysis. ACS Nano, 2022, 16: 16452,
CrossRef Google scholar
[51]
Han ZJ, Pineda S, Murdock AT, Seo DH, Ostrikov K, Bendavid A. RuO2-coated vertical graphene hybrid electrodes for high-performance solid-state supercapacitors. J Mater Chem A, 2017, 5: 17293,
CrossRef Google scholar
[52]
Tomikawa K, Kanno H. Raman study of sulfuric acid at low temperatures. J Phys Chem A, 1998, 102: 6082,
CrossRef Google scholar
[53]
Turner D. Raman spectral study of bisulphate ion hydration. J Chem Soc-Perkin Trans 2., 1972, 68: 643
[54]
Lund Myhre CE, Christensen DH, Nicolaisen FM, Nielsen CJ. Spectroscopic study of aqueous H2SO4 at different temperatures and compositions: variations in dissociation and optical properties. J Phys Chem A, 1979, 2003: 107
[55]
Liu T, Wang S, Zhang Q, Chen L, Hu W, Li CM. Ultrasmall Ru2P nanoparticles on graphene: a highly efficient hydrogen evolution reaction electrocatalyst in both acidic and alkaline media. Chem Commun, 2018, 54: 3343,
CrossRef Google scholar
[56]
Takigawa I, Shimizu K, Tsuda K, Takakusagi S. Machine-learning prediction of the d-band center for metals and bimetals. RSC Adv, 2016, 6: 52587,
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/