An Ag/C Core–Shell Composite Functionalized Carbon Nanofiber Film as Freestanding Bifunctional Host for Advanced Lithium–Sulfur Batteries

Cong Zhou, Hongyu Wang, Quanqing Li, Feichao Wu, Shuyi Cao, Jingde Li, Zhaoyang Tan

Advanced Fiber Materials ›› 2023, Vol. 6 ›› Issue (1) : 181-194. DOI: 10.1007/s42765-023-00341-0
Research Article

An Ag/C Core–Shell Composite Functionalized Carbon Nanofiber Film as Freestanding Bifunctional Host for Advanced Lithium–Sulfur Batteries

Author information +
History +

Abstract

The uncontrolled dendrite growth and shuttle effect of polysulfides have hindered the practical application of lithium–sulfur (Li–S) batteries. Herein, a metal–organic framework-derived Ag/C core–shell composite integrated with a carbon nanofiber film (Ag/C@CNF) is developed to address these issues in Li-S batteries. The Ag/C core–shell structure design endows the CNF skeleton with enhanced electrical conductivity, electrocatalysis performance toward polysulfides conversion, and lithium nucleation. When served as a freestanding bifunctional host in Li-S batteries, the Ag/C@CNF composite regulates the Li and sulfur electrochemical processes by guiding the uniform Li deposition with mitigated dendrite growth and at the same time accelerating the polysulfides conversion. The assembled Li–S full battery delivers a considerable capacity of 650 mAh g−1, an ultralong cyclability with an attenuation rate as low as 0.02% per cycle for 1000 cycles at 5 C, and excellent rate performances at increased sulfur loading up to 7.6 mg cm−2 under lean electrolyte condition.

Keywords

Ag/C composite / Core−shell structure / Bifunctional hosts / Lithium-sulfur batteries

Cite this article

Download citation ▾
Cong Zhou, Hongyu Wang, Quanqing Li, Feichao Wu, Shuyi Cao, Jingde Li, Zhaoyang Tan. An Ag/C Core–Shell Composite Functionalized Carbon Nanofiber Film as Freestanding Bifunctional Host for Advanced Lithium–Sulfur Batteries. Advanced Fiber Materials, 2023, 6(1): 181‒194 https://doi.org/10.1007/s42765-023-00341-0

References

[1]
Yang DW, Liang ZF, Tang PY, Zhang CQ, Tang MX, Li QZ, Biendicho JJ, Li JS, Heggen M, Dunin-Borkowski RE. A high conductivity 1D π-d conjugated metal-organic framework with efficient polysulfide trapping-diffusion-catalysis in lithium–sulfur batteries. Adv Mater, 2022, 34: 2108835,
CrossRef Google scholar
[2]
Luo J, Liu XF, Lei W, Jia QL, Zhang SW, Zhang HJ. Self-standing lotus root-like host materials for high-performance lithium–sulfur batteries. Adv Fiber Mater, 2022, 4: 1656,
CrossRef Google scholar
[3]
Chen M, Shao M, Jin J, Cui L, Tu H, Fu X. Configurational and structural design of separators toward shuttling-free and dendrite-free lithium–sulfur batteries: a review. Energy Storage Mater, 2022, 47: 629,
CrossRef Google scholar
[4]
Xiao X, Yin JY, Shen S, Che ZY, Wan X, Wang SL, Chen J. Advances in solid-state fiber batteries for wearable bioelectronics. Curr Opin Solid State Mater Sci, 2022, 26,
CrossRef Google scholar
[5]
Xu SM, Liang X, Wu XY, Zhao SL, Chen J, Wang KX, Chen JS. Multistaged discharge constructing heterostructure with enhanced solid-solution behavior for long-life lithium–oxygen batteries. Nat Commun, 2019, 10: 5810,
CrossRef Google scholar
[6]
Gao YX, Deng C, Fan Y, Wang SB, Huang SM, Lu SG, Tao T. A liquid cathode/anode based solid-state lithium–sulfur battery. Electrochim Acta, 2022, 421,
CrossRef Google scholar
[7]
Huang Y, Lin L, Zhang C, Liu L, Li Y, Qiao Z, Lin J, Wei Q, Wang L, Xie Q. Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li–S batteries. Adv Sci, 2022, 9: 2106004,
CrossRef Google scholar
[8]
Wan JY, Xie J, Kong X, Liu Z, Liu K, Shi FF, Pei A, Chen H, Chen W, Chen J, Zhang XK, Zong LQ, Wang JY, Chen LQ, Qin J, Cui Y. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat Nanotechnol, 2019, 14: 705,
CrossRef Google scholar
[9]
Zhao Q, Wang R, Wen J, Hu X, Li Z, Li M, Pan F, Xu C. Separator engineering toward practical Li–S batteries: targeted electrocatalytic sulfur conversion, lithium plating regulation, and thermal tolerance. Nano Energy, 2022, 95,
CrossRef Google scholar
[10]
Li YJ, Guo SJ. Material design and structure optimization for rechargeable lithium–sulfur batteries. Matter, 2022, 4: 1142,
CrossRef Google scholar
[11]
Cao XW, Ma C, Luo L, Chen L, Cheng H, Orenstein RS, Zhang XW. Nanofiber materials for lithium-ion batteries. Adv Fiber Mater, 2023, 5: 1141,
CrossRef Google scholar
[12]
He J, Manthiram A. 3D CoSe@C aerogel as a host for dendrite-free lithium-metal anode and efficient sulfur cathode in Li–S full cells. Adv Energy Mater, 2020, 10: 2002654,
CrossRef Google scholar
[13]
Zhou L, Danilov DL, Eichel RA, Notten PHL. Host materials anchoring polysulfides in Li–S batteries reviewed. Adv Energy Mater, 2021, 11: 2001304,
CrossRef Google scholar
[14]
Wei YH, Wang BY, Zhang Y, Zhang M, Wang Q, Zhang Y, Wu H. Rational design of multifunctional integrated host configuration with lithiophilicity–sulfiphilicity toward high-performance Li–S full batteries. Adv Funct Mater, 2021, 31: 2006033,
CrossRef Google scholar
[15]
Peng Y, Bai Y, Liu CL, Cao S, Kong QQ, Pang H. Applications of metal-organic framework-derived N, P, S doped materials in electrochemical energy conversion and storage. Coord Chem Rev, 2022, 466,
CrossRef Google scholar
[16]
Feng L, Yu P, Fu X, Zhang Z, Davey K, Wang Y, Guo Z, Yang W. Regulating polysulfide diffusion and deposition via rational design of core–shell active materials in Li–S batteries. ACS Nano, 2022, 16: 7982,
CrossRef Google scholar
[17]
He RH, Wang YT, Zhang CY, Liu ZH, He P, Hong XF, Yu RH, Zhao Y, Wu JS, Zhou L, Mai LQ. Sequential and dendrite-free Li plating on Cu foil enabled by an ultrathin yolk–shell SiOx/C@C layer. Adv Energy Mater, 2023, 13: 2204075,
CrossRef Google scholar
[18]
Meng JW, Lei M, Lai CZ, Wu QP, Liu YY, Li PC. Lithium ion repulsion-enrichment synergism induced by core–shell ionic complexes to enable high-loading lithium metal batteries. Angew Chem Int Ed, 2021, 60: 23256,
CrossRef Google scholar
[19]
Deng NP, Li YN, Li QX, Zeng Q, Luo SB, Wang H, Kang WM, Cheng BW. Multi-functional yolk–shell structured materials and their applications for high-performance lithium ion battery and lithium sulfur battery. Energy Storage Mater, 2022, 53: 684,
CrossRef Google scholar
[20]
Bai YQ, Nguyen TT, Chu RR, Kim NH, Lee JH. Core–shell hollow nanostructures as highly efficient polysulfide conversion and adsorption cathode for shuttle-free lithium–sulfur batteries. Chem Eng J, 2023, 454,
CrossRef Google scholar
[21]
Gao MQ, Zhou WY, Mo YX, Sheng T, Deng YH, Chen LZ, Wang K, Tan YL, Zhou HQ. Outstanding long-cycling lithium–sulfur batteries by core-shell structure of S@Pt composite with ultrahigh sulfur content. Adv Powder Mater, 2022, 1,
CrossRef Google scholar
[22]
Li L, Luo YH, Wang YN, Zhang ZS, Wu FC, Li JD. Rational design of a well-aligned metal-organic framework nanopillar array for superior lithium–sulfur batteries. Chem Eng J, 2023, 454,
CrossRef Google scholar
[23]
Li Y, Lin S, Wang D, Gao T, Song J, Zhou P, Xu Z, Yang Z, Xiao N, Guo S. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium–sulfur batteries. Adv Mater, 2020, 32: 1906722,
CrossRef Google scholar
[24]
Tan ZK, Gong JL, Fang SY, Li J, Cao WC, Chen ZP. Outstanding anti-bacterial thin-film composite membrane prepared by incorporating silver-based metal-organic framework Ag-MOF for water treatment. Appl Surf Sci, 2022, 590,
CrossRef Google scholar
[25]
Zhang YS, Zhang XL, Silva SRP, Ding B, Zhang P, Shao GS. Lithium–sulfur batteries meet electrospinning: recent advances and the key parameters for high gravimetric and volume energy density. Adv Sci, 2021, 9: 2103879,
CrossRef Google scholar
[26]
Dou YB, Zhang WJ, Kaiser A. Electrospinning of metal-organic frameworks for energy and environmental applications. Adv Sci, 2020, 7: 1902590,
CrossRef Google scholar
[27]
Wang YN, Zhao JY, Wu FC, Wei SC, Cao SY, Yang YQ, Li JD. An ordered conductive Ni-CAT nanorods array as all-round polysulfide regulator for lithium–sulfur batteries. Electrochim Acta, 2023, 441,
CrossRef Google scholar
[28]
Lu W, Wang Z, Sun G, Zhang S, Cong L, Lin L, Chen S, Liu J, Xie H, Liu Y. Anchoring polysulfide with artificial solid electrolyte interphase for dendrite-free and low N/P ratio Li–S batteries. J Energy Chem, 2023, 80: 32,
CrossRef Google scholar
[29]
Wang XY, Wang YN, Wu FC, Jin GF, Li JD, Zhang ZS. Continuous zirconium-based MOF-808 membranes for polysulfide shuttle suppression in lithium–sulfur batteries. Appl Surf Sci, 2022, 596,
CrossRef Google scholar
[30]
Wang H, Wu Y, Liu SH, Jiang Y, Shen D, Kang TX, Tong ZQ, Wu D, Li XJ, Lee CS. 3D Ag@C cloth for stable anode free sodium metal batteries. Small Methods, 2021, 5: 2001050,
CrossRef Google scholar
[31]
Li WL, Chen K, Xu QC, Li XY, Zhang Q, Weng J, Xu J. Mo2C/C Hierarchical double-shelled hollow spheres as sulfur host for advanced Li–S batteries. Angew Chem Int Ed, 2021, 60: 21512,
CrossRef Google scholar
[32]
Firouzjaei MD, Shamsabadi AA, Gh MS, Rahimpour A, Soroush M. A novel nanocomposite with superior antibacterial activity: a silver-based metal organic framework embellished with graphene oxide. Adv Mater Interfaces, 2018, 5: 1701365,
CrossRef Google scholar
[33]
He Y, Li M, Zhang Y, Shan Z, Zhao Y, Li J, Liu G, Liang C, Bakenov Z, Li Q. All-purpose electrode design of flexible conductive scaffold toward high-performance Li–S batteries. Adv Funct Mater, 2020, 30: 2000613,
CrossRef Google scholar
[34]
Fang Y, Zhang S, Wu Z, Luan D, Xiong W, Lou D. A highly stable lithium metal anode enabled by Ag nanoparticle-embedded nitrogen-doped carbon macroporous fibers. Sci Adv, 2021, 7: 3626,
CrossRef Google scholar
[35]
Song Y, Liu X, Gao Z, Wang Z, Hu Y, Yang K, Zhao Z, Di Lan WuG. Core-shell Ag@C spheres derived from Ag-MOFs with tunable ligand exchanging phase inversion for electromagnetic wave absorption. J Colloid Interface Sci, 2022, 620: 263,
CrossRef Google scholar
[36]
Zhu M, Liu XM, Tan L, Cui ZD, Liang YQ, Li ZY, Yeung KWK, Wu SL. Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing. J Hazard Mater, 2020, 383,
CrossRef Google scholar
[37]
Liu L, Ma T, Fang W, Liu Y, Konstantinov K, Wang J, Liu H. Facile fabrication of Ag nanocrystals encapsulated in nitrogen-doped fibrous carbon as an efficient catalyst for lithium oxygen batteries. Energy Environ Mater, 2021, 4: 239,
CrossRef Google scholar
[38]
Jin Q, Qi XQ, Yang FY, Jiang RN, Xie Y, Qie L, Huang YH. The failure mechanism of lithium–sulfur batteries under lean-ether-electrolyte conditions. Energy Storage Mater, 2021, 38: 255,
CrossRef Google scholar
[39]
Huang ZD, Yang MT, Qi JQ, Zhang P, Lei LN, Du QC, Bai L, Fu H, Yang XS, Liu RQ, Masese T, Zhang HJ, Ma YW. Mitigating the polysulfides “shuttling” with TiO2 nanowires/nanosheets hybrid modified separators for robust lithium–sulfur batteries. Chem Eng J, 2020, 387,
CrossRef Google scholar
[40]
Dang BY, Gao DY, Luo YH, Zhang ZS, Li JD, Wu FC. Bifunctional design of cerium-based metal-organic framework-808 membrane modified separator for polysulfide shuttling and dendrite growth inhibition in lithium–sulfur batteries. J Energy Storage, 2022, 52,
CrossRef Google scholar
[41]
Wang SH, Yin YX, Zuo TT, Dong W, Li JY, Shi JL, Zhang CH, Li NW, Li CJ, Guo YG. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv Mater, 2017, 29: 1703729,
CrossRef Google scholar
[42]
Wang TS, Liu XB, Wang Y, Fan LZ. High areal capacity dendrite-free Li anode enabled by metal-organic framework-derived nanorod array modified carbon cloth for solid state Li metal batteries. Adv Funct Mater, 2021, 31: 2001973,
CrossRef Google scholar
[43]
Liu FF, Xu R, Hu ZX, Ye SF, Zeng SF, Yao Y, Li SQ, Yu Y. Regulating lithium nucleation via CNTs modifying carbon cloth film for stable Li metal anode. Small, 2019, 15: 1803734,
CrossRef Google scholar
[44]
Wang D, Du G, Wang Y, Fan Y, Han D, Su Q, Ding S, Zhao W, Xu B. BiOI nanosheets-wrapped carbon fibers as efficient electrocatalyst for bidirectional polysulfide conversion in Li-S batteries. Chem Eng J, 2022, 430,
CrossRef Google scholar
[45]
Wan T, He Y, He Z, Han W, Zhang Y, Liu G. Integrated host configuration of flexibly fibrous skeleton towards efficient polysulfide conversion and dendrite-free behavior in stable lithium-sulfur pouch cells. J Energy Chem, 2023, 83: 43,
CrossRef Google scholar
[46]
Zhang L, Liu Y, Zhao Z, Jiang P, Zhang T, Li M, Pan S, Tang T, Wu T, Liu P, Hou Y, Lu H. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li–S batteries. ACS Nano, 2020, 14: 8495,
CrossRef Google scholar
[47]
Zhang YG, Liu JB, Wang JY, Zhao Y, Luo D, Yu AP, Wang X, Chen ZW. Engineering oversaturated Fe–N5 multifunctional catalytic sites for durable lithium–sulfur batteries. Angew Chem Int Ed, 2021, 133: 26826,
CrossRef Google scholar
[48]
Xu P, Liu H, Zeng V, Li X, Li Q, Pei K, Zhang Y, Yu X, Qian J, Zhang X, Che R. Yolk-shell nano ZnO@Co-doped NiO with efficient polarization adsorption and catalysis performance for superior lithium–sulfur batteries. Small, 2021, 17: 2005227,
CrossRef Google scholar
[49]
Xu H, Hu R, Zhang Y, Yan H, Zhu Q, Shang J, Yang S, Li B. Nano high-entropy alloy with strong affinity driving fast polysulfide conversion towards stable lithium sulfur batteries. Energy Storage Mater, 2021, 43: 212,
CrossRef Google scholar
[50]
Liu GL, Yuan C, Zeng P, Cheng C, Yan TN, Dai KH, Mao J, Zhang L. Bidirectionally catalytic polysulfide conversion by high-conductive metal carbides for lithium–sulfur batteries. J Energy Chem, 2022, 67: 73,
CrossRef Google scholar
[51]
Zeng P, Peng J, Yu H, Zhou X, Wang KF, Liu JL, Zhou ZY, Chen MF, Miao CQ, Guo XW, Chang BB, Wang XY. In-situ synthesis of highly graphitized and Fe/N enriched carbon tubes as catalytic mediums for promoting multi-step conversion of lithium polysulfides. Carbon, 2022, 192: 418,
CrossRef Google scholar
[52]
Zhou GM, Chen H, Cui Y. Formulating energy density for designing practical lithium–sulfur batteries. Nat Energy, 2022, 7: 312,
CrossRef Google scholar
[53]
Lyu W, Zhang WY, Liu H, Liu YP, Zuo HY, Yan CN, Faul CFJ, Thomas A, Zhu MF, Liao YZ. Conjugated microporous polymer network grafted carbon nanotube fibers with tunable redox activity for efficient flexible wearable energy storage. Chem Mater, 2020, 32: 8276,
CrossRef Google scholar
[54]
Lyu W, Yan CN, Chen ZJ, Chen J, Zuo HY, Teng LK, Liu H, Wang LP, Liao YZ. Spirobifluorene-based conjugated microporous polymer-grafted carbon nanotubes for efficient supercapacitive energy storage. ACS Appl Energy Mater, 2022, 5: 3706,
CrossRef Google scholar
Funding
Outstanding Young Talents Project of Hebei High Education Institutions(BJ2021020); National Natural Science Foundation of China(No. 22278109)

Accesses

Citations

Detail

Sections
Recommended

/