Spatially Confined MXene/PVDF Nanofiber Piezoelectric Electronics

Jieling Zhang, Tao Yang, Guo Tian, Boling Lan, Weili Deng, Lihua Tang, Yong Ao, Yue Sun, Wanghong Zeng, Xiarong Ren, Zhaoyu Li, Long Jin, Weiqing Yang

Advanced Fiber Materials ›› 2023, Vol. 6 ›› Issue (1) : 133-144. DOI: 10.1007/s42765-023-00337-w
Research Article

Spatially Confined MXene/PVDF Nanofiber Piezoelectric Electronics

Author information +
History +

Abstract

Piezoelectric nanofibers have received extensive attention in the field of electronic devices, but they are still restricted for further development, due to their limited dipole arrangement. Herein, we propose spatially confined MXene/polyvinylidene fluoride (PVDF) nanofibers for piezoelectric application, with dual functions of pressure sensing and energy harvesting. The spatial confinement of MXene/PVDF nanofibers can actively induce the optimally aligned –CH2–/–CF2– dipoles of PVDF and dramatically boost spontaneous polarization for piezoelectric enhancement. The voltage and current generated by fabricated MXene/PVDF (0.8 wt%) nanofiber piezoelectric electronic devices  are respectively 3.97 times and 10.1 times higher than those generated by pure PVDF nanofibers. Based on these results, the developed bifunctional electronic devices are applied to monitor various human movements and to harvest energy. Notably, the results of this work allow for the development of nanofibers with excellent piezoelectric performance using a spatial confinement mechanism.

Keywords

Piezoelectric nanofibers / Electrospinning / Confined structure / PVDF / MXene

Cite this article

Download citation ▾
Jieling Zhang, Tao Yang, Guo Tian, Boling Lan, Weili Deng, Lihua Tang, Yong Ao, Yue Sun, Wanghong Zeng, Xiarong Ren, Zhaoyu Li, Long Jin, Weiqing Yang. Spatially Confined MXene/PVDF Nanofiber Piezoelectric Electronics. Advanced Fiber Materials, 2023, 6(1): 133‒144 https://doi.org/10.1007/s42765-023-00337-w

References

[1]
Liu Y, Aziguli H, Zhang B, Xu WH, Lu WC, Bernholc J, Wang Q. Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary. Nature, 2018, 562: 96,
CrossRef Google scholar
[2]
Peng Z, Shi J, Xiao X, Hong Y, Li X, Zhang W, Cheng Y, Wang Z, Li WJ, Chen J, Leung MKH, Yang Z. Self-charging electrostatic face masks leveraging triboelectrification for prolonged air filtration. Nat Commun, 2022, 13: 7835,
CrossRef Google scholar
[3]
Shen L, Shi Q, Zhang SP, Gao J, Cheng DC, Yi M, Song RY, Wang LD, Jiang JW, Karnik R, Zhang S. Highly porous nanofiber-supported monolayer graphene membranes for ultrafast organic solvent nanofiltration. Sci Adv, 2021, 7: abg6263,
CrossRef Google scholar
[4]
Su CC, Huang XC, Zhang LL, Zhang YZ, Yu ZH, Chen C, Ye YM, Guo SS. Robust superhydrophobic wearable piezoelectric nanogenerators for self-powered body motion sensors. Nano Energy, 2023, 107: 108095,
CrossRef Google scholar
[5]
Kang S, Kim SH, Lee HB, Mhin S, Ryu JH, Kim YW, Jones JL, Son Y, Lee NK, Lee K, Kim Y, Jung KH, Han H, Park SH, Kim KM. High-power energy harvesting and imperceptible pulse sensing through peapod-inspired hierarchically designed piezoelectric nanofibers. Nano Energy, 2022, 99: 107386,
CrossRef Google scholar
[6]
Yang T, Pan H, Tian G, Zhang BB, Xiong D, Gao YY, Yan C, Chu X, Chen NJ, Zhong S, Zhang L, Deng WL, Yang WQ. Hierarchically structured PVDF/ZnO core-shell nanofibers for self-powered physiological monitoring electronics. Nano Energy, 2020, 72: 104706,
CrossRef Google scholar
[7]
Qian X, Chen X, Zhu L, Zhang QM. Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion. Science, 2023, 380: eadg0902,
CrossRef Google scholar
[8]
Guo MF, Guo CQ, Han J, Chen SL, He S, Tang TX, Li Q, Strzalka J, Ma J, Yi S, Wang K, Xu B, Gao P, Huang HB, Chen LQ, Zhang SJ, Lin YH, Nan CW, Shen Y. Toroidal polar topology in strained ferroelectric polymer. Science, 2021, 371: 1050,
CrossRef Google scholar
[9]
Wan C, Bowen CR. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure. J Mater Chem A, 2017, 5: 3091,
CrossRef Google scholar
[10]
Wang ZX, Liao WQ. Giant electromechanical effects in polymers. Science, 2022, 375: 1353,
CrossRef Google scholar
[11]
Xu CZ, Cheong JY, Mo XM, Jérôme V, Freitag R, Agarwal S, Gharibi R, Greiner A. Thoroughly hydrophilized electrospun poly(l-lactide)/poly(ε‐caprolactone) sponges for tissue engineering application. Macromol Biosci. 2023; 2300143.
[12]
Bulemo PM, Cheong JY. Review on porosity control in nanostructured semiconducting metal oxides and its influence on chemiresistive gas sensing. ACS Appl Nano Mater, 2023, 6: 1027,
CrossRef Google scholar
[13]
Yoon H, Cheong JY, Yun TG, Hwang B. Cellulose fiber-based, yarn-based, and textile-based hydroelectric nanogenerators: a mini-review. Cellulose, 2023, 30: 4071,
CrossRef Google scholar
[14]
Persano L, Dagdeviren C, Su YW, Zhang YH, Girardo S, Pisignano D, Huang YG, Rogers JA. High performance piezoelectric devices based on aligned arrays of nanofibers of poly(vinylidenefluoride-co-trifluoroethylene). Nat Commun, 2013, 4: 1633,
CrossRef Google scholar
[15]
Lan BL, Xiao X, Carlo AD, Deng WL, Yang T, Jin L, Tian G, Ao Y, Yang WQ, Chen J. Topological nanofibers enhanced piezoelectric membranes for soft bioelectronics. Adv Funct Mater, 2022, 32: 2207393,
CrossRef Google scholar
[16]
Chai B, Shi KM, Wang YL, Liu YJ, Liu F, Jiang PK, Sheng GH, Wang SJ, Xu P, Xu XY, Huang XY. Modulus-modulated all-organic core-shell nanofiber with remarkable piezoelectricity for energy harvesting and condition monitoring. Nano Lett, 2023, 23: 1810,
CrossRef Google scholar
[17]
Lan BL, Yang T, Tian G, Ao Y, Jin L, Xiong D, Wang SL, Zhang HR, Deng L, Sun Y, Zhang JL, Deng WL, Yang WQ. Multichannel gradient piezoelectric transducer assisted with deep learning for broadband acoustic sensing. ACS Appl Mater Interfaces, 2023, 15: 12146,
CrossRef Google scholar
[18]
Yousry YM, Yao K, Mohamed AM, Liew WH, Chen S, Ramakrishna S. Theoretical model and outstanding performance from constructive piezoelectric and triboelectric mechanism in electrospun PVDF fiber film. Adv Funct Mater, 2020, 30: 1910592,
CrossRef Google scholar
[19]
Shi KM, Sun B, Huang XY, Jiang PK. Synergistic effect of graphene nanosheet and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF nanofiber mat for flexible piezoelectric nanogenerators. Nano Energy, 2018, 52: 153,
CrossRef Google scholar
[20]
Wang S, Shao HQ, Liu Y, Tang CY, Zhao X, Ke K, Bao RY, Yang MB, Yang W. Boosting piezoelectric response of PVDF-TrFE via MXene for self-powered linear pressure sensor. Compos Sci Technol, 2021, 202: 108600,
CrossRef Google scholar
[21]
Bhatta T, Maharjan P, Cho H, Park C, Yoon SH, Sharma S, Salauddin M, Rahman MT, Rana SMS, Park JY. High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers. Nano Energy, 2021, 81: 105670,
CrossRef Google scholar
[22]
Karan SK, Mandal D, Khatua BB. Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. Nanoscale, 2015, 7: 10655,
CrossRef Google scholar
[23]
Su YJ, Li WX, Yuan L, Chen CX, Pan H, Xie GZ, Conta G, Ferrier S, Zhao X, Chen GR, Tai HL, Jiang YD, Chen J. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy, 2021, 89: 106321,
CrossRef Google scholar
[24]
Tamang A, Ghosh SK, Garain S, Alam MM, Haeberle J, Henkel K, Schmeisser D, Mandal D. DNA-Assisted beta-phase nucleation and alignment of molecular dipoles in PVDF film: a realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices. ACS Appl Mater Interfaces, 2015, 7: 16143,
CrossRef Google scholar
[25]
Shen ZH, Wang JJ, Jiang JY, Huang SX, Lin YH, Nan CW, Chen LQ, Shen Y. Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics. Nat Commun, 2019, 10: 1843,
CrossRef Google scholar
[26]
Zhang YC, Zheng N, Cao Y, Wang FL, Wang P, Ma YJ, Lu BW, Hou GH, Fang ZZ, Liang ZW, Yue MK, Li Y, Chen Y, Fu J, Wu J, Xie T, Feng X. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci Adv, 2019, 5: aaw1066,
CrossRef Google scholar
[27]
Huang X, Wang YY, Zhang XX. Ultrarobust, hierarchically anisotropic structured piezoelectric nanogenerators for self-powered sensing. Nano Energy, 2022, 99: 107379,
CrossRef Google scholar
[28]
Hong Y, Wang B, Lin WK, Jin LH, Liu SY, Luo XW, Pan J, Wang WP, Yang ZB. Highly anisotropic and flexible piezoceramic kirigami for preventing joint disorders. Sci Adv, 2021, 7: abf0795,
CrossRef Google scholar
[29]
He LR, Lu J, Han C, Liu XG, Liu JF, Zhang CH. Electrohydrodynamic pulling consolidated high-efficiency 3D printing to architect unusual self-polarized beta-PVDF arrays for advanced piezoelectric sensing. Small, 2022, 18: 2200114,
CrossRef Google scholar
[30]
Lo WC, Chen CC, Fuh YK. 3D stacked near-field electrospun nanoporous PVDF‐TrFE nanofibers as self‐powered smart sensing in gait big data analytics. Adv Mater Technol, 2021, 6: 2000779,
CrossRef Google scholar
[31]
Kim J, Jang M, Jeong G, Yu S, Park J, Lee Y, Cho S, Yeom J, Lee Y, Choe A, Kim YR, Yoon Y, Lee SS, An KS, Ko H. MXene-enhanced β-phase crystallization in ferroelectric porous composites for highly-sensitive dynamic force sensors. Nano Energy, 2021, 89: 106409,
CrossRef Google scholar
[32]
Zhang MD, Liu CK, Li BY, Shen YT, Wang H, Ji KY, Mao X, Wei L, Sun RJ, Zhou FL. Electrospun PVDF-based piezoelectric nanofibers: materials, structures, and applications. Nanoscale Adv, 2023, 5: 1043,
CrossRef Google scholar
[33]
Su YJ, Li WX, Cheng XX, Zhou YH, Yang S, Zhang X, Chen CX, Yang TN, Pan H, Xie GZ, Chen GR, Zhao X, Xiao X, Li B, Tai HL, Jiang YD, Chen LQ, Li F, Chen J. High-performance piezoelectric composites via beta phase programming. Nat Commun, 2022, 13: 4867,
CrossRef Google scholar
[34]
Zhao Y, Gao WC, Dai K, Wang S, Yuan ZQ, Li JN, Zhai W, Zheng GQ, Pan CF, Liu CT, Shen CY. Bioinspired multifunctional photonic-electronic smart skin for ultrasensitive health monitoring, for visual and self-powered sensing. Adv Mater, 2021, 33: 2102332,
CrossRef Google scholar
[35]
Xiong D, Deng WL, Tian G, Zhang BB, Zhong S, Xie YT, Yang T, Zhao HB, Yang WQ. Controllable in-situ-oxidization of 3D-networked Ti3C2T-TiO2 photodetectors for large-area flexible optical imaging. Nano Energy, 2022, 93: 106889,
CrossRef Google scholar
[36]
Yun J, Park J, Ryoo M, Kitchamsetti N, Goh TS, Kim D. Piezo-triboelectric hybridized nanogenerator embedding MXene based bifunctional conductive filler in polymer matrix for boosting electrical power. Nano Energy, 2023, 105: 108018,
CrossRef Google scholar
[37]
Wang SL, Deng WL, Yang T, Ao Y, Zhang HR, Tian G, Deng L, Huang HC, Huang JF, Lan BL, Yang WQ. Bioinspired MXene-based piezoresistive sensor with two‐stage enhancement for motion capture. Adv Funct Mater, 2023, 33: 2214503,
CrossRef Google scholar
[38]
Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW. X-Ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci, 2016, 362: 406,
CrossRef Google scholar
[39]
Tian G, Deng WL, Xiong D, Yang T, Zhang BB, Ren XR, Lan BL, Zhong S, Jin L, Zhang HR, Deng L, Yang WQ. Dielectric micro-capacitance for enhancing piezoelectricity via aligning MXene sheets in composites. Cell Rep Phys Sci, 2022, 3: 100814,
CrossRef Google scholar
[40]
Martins P, Lopes AC, Lanceros-Mendez S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci, 2014, 39: 683,
CrossRef Google scholar
[41]
Li T, Qu MH, Carlos C, Gu L, Jin F, Yuan T, Wu XW, Xiao JJ, Wang T, Dong W, Wang XD, Feng ZQ. High-performance poly(vinylidene difluoride)/dopamine core/shell piezoelectric nanofiber and its application for biomedical sensors. Adv Mater, 2021, 33: 2006093,
CrossRef Google scholar
[42]
Li T, Feng ZQ, Qu MH, Yan K, Yuan T, Gao BB, Wang T, Dong W, Zheng J. Core/shell piezoelectric nanofibers with spatial self-orientated beta-phase nanocrystals for real-time micropressure monitoring of cardiovascular walls. ACS Nano, 2019, 13: 10062,
CrossRef Google scholar
[43]
Shepelin NA, Sherrell PC, Skountzos EN, Goudeli E, Zhang J, Lussini VC, Imtiaz B, Usman KAS, Dicinoski GW, Shapter JG, Razal JM, Ellis AV. Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites. Nat Commun, 2021, 12: 3171,
CrossRef Google scholar
[44]
Xi BB, Wang LL, Yang B, Xia YF, Chen DL, Wang X. Boosting output performance of triboelectric nanogenerator based on BaTiO3:La embedded nanofiber membrane for energy harvesting and wireless power transmission. Nano Energy, 2023, 110: 108385,
CrossRef Google scholar
Funding
Postdoctoral Innovation Talents Support Program(No. BX20220257); the Multiple Clean Energy Harvesting System(No. YYF20223026); Sichuan Province Science and Technology Support Program(No. 2023NSFSC0313); Catalyst Seeding General Grant administered by the Royal Society of New Zealand(Contract 20-UOA-035-CSG)

Accesses

Citations

Detail

Sections
Recommended

/