AXL promotes malignant phenotypes in tumor cells and might be a potential antitumor target of natural products

Yuan Yuan , Shan Wang , Jia-Lei Fu , Xin-Xin Deng , Yang Guo , Zheng-Wang Guo , Shu-Yan Han

Adv. Chi. Med ›› 2024, Vol. 1 ›› Issue (4) : 179 -189.

PDF (885KB)
Adv. Chi. Med ›› 2024, Vol. 1 ›› Issue (4) :179 -189. DOI: 10.1002/acm4.29
REVIEW ARTICLE

AXL promotes malignant phenotypes in tumor cells and might be a potential antitumor target of natural products

Author information +
History +
PDF (885KB)

Abstract

AXL belongs to the TAM receptor tyrosine kinase family. Relying on binding its high‐affinity ligand—growth arrest‐specific protein 6 (Gas6)—AXL plays an important role in tumor initiation and progression. Traditional Chinese Medicine (TCM) has been clinically used in tumor treatment for a long time, and remarkable therapeutic efficacy has been achieved. Recent studies pointed out that some natural products derived from TCM could inhibit tumor growth by targeting AXL. The potential antitumor mechanisms of natural products targeting AXL still need to be understood. In this review, we discussed the relationship between the AXL axis and tumor malignant phenotype, including migration, invasion, drug resistance, and immunosuppression. The effects and mechanisms of natural products on targeting AXL in tumors also have been systematically summarized.

Keywords

AXL / cancer treatment / natural product / receptor tyrosine kinase / signaling pathway

Cite this article

Download citation ▾
Yuan Yuan, Shan Wang, Jia-Lei Fu, Xin-Xin Deng, Yang Guo, Zheng-Wang Guo, Shu-Yan Han. AXL promotes malignant phenotypes in tumor cells and might be a potential antitumor target of natural products. Adv. Chi. Med, 2024, 1(4): 179-189 DOI:10.1002/acm4.29

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hanahan D . Hallmarks of cancer: new dimensions. Cancer Discov. 2022; 12 (1): 31- 46.

[2]

Huang L , Jiang S , Shi Y . Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001-2020). J Hematol Oncol. 2020; 13 (1): 143.

[3]

Butti R , Das S , Gunasekaran VP , Yadav AS , Kumar D , Kundu GC . Receptor tyrosine kinases (RTKs) in breast cancer: signaling, therapeutic implications and challenges. Mol Cancer. 2018; 17 (1): 34.

[4]

Huang L , Fu L . Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B. 2015; 5 (5): 390- 401.

[5]

Niederst MJ , Engelman JA . Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci Signal. 2013; 6 (294): re6.

[6]

Luo M , Fu LW . Redundant kinase activation and resistance of EGFR-tyrosine kinase inhibitors. Am J Cancer Res. 2014; 4 (6): 608- 628.

[7]

Scaltriti M , Elkabets M , Baselga J . Molecular pathways: AXL, a membrane receptor mediator of resistance to therapy. Clin Cancer Res. 2016; 22 (6): 1313- 1317.

[8]

Landers SM , Bhalla AD , Ma X , et al. AXL inhibition enhances MEK inhibitor sensitivity in malignant peripheral nerve sheath tumors. J Cancer Sci Clin Ther. 2020; 4 (4): 511- 525.

[9]

Liu L , Greger J , Shi H , et al. Novel mechanism of lapatinib resistance in HER2-positive breast tumor cells: activation of AXL. Cancer Res. 2009; 69 (17): 6871- 6878.

[10]

Han S , Wang Y , Ge C , et al. Pharmaceutical inhibition of AXL suppresses tumor growth and invasion of esophageal squamous cell carcinoma. Exp Ther Med. 2020; 20 (5): 41.

[11]

Jiang C , Cheng Z , Jiang T , Xu Y , Wang B . MicroRNA-34a inhibits cell invasion and epithelial-mesenchymal transition via targeting AXL/PI3K/AKT/Snail signaling in nasopharyngeal carcinoma. Genes Genomics. 2020; 42 (8): 971- 978.

[12]

Tanaka M , Siemann DW . Gas6/Axl signaling pathway in the tumor immune microenvironment. Cancers. 2020; 12 (7): 1850.

[13]

Bumm CV , Folwaczny M , Wolfle UC . Necrotizing periodontitis or medication-related osteonecrosis of the jaw (MRONJ) in a patient receiving Bemcentinib-a case report. Oral Maxillofac Surg. 2020; 24 (3): 353- 358.

[14]

Atanasov AG , Waltenberger B , Pferschy-Wenzig EM , et al. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015; 33 (8): 1582- 1614.

[15]

Efferth T . From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin Cancer Biol. 2017; 46: 65- 83.

[16]

Kim NY , Yang IJ , Kim S , Lee C . Lotus (Nelumbo nucifera) seedpod extract inhibits cell proliferation and induces apoptosis in non-small cell lung cancer cells via down-regulation of Axl. J Food Biochem. 2021; 45 (2): e13601.

[17]

Jeong I , Song J , Bae SY , Lee SK . Overcoming the intrinsic gefitinib-resistance via downregulation of AXL in non-small cell lung cancer. J Cancer Prev. 2019; 24 (4): 217- 223.

[18]

Graham DK , DeRyckere D , Davies KD , Earp HS . The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer. 2014; 14 (12): 769- 785.

[19]

Linger RMA , Keating AK , Earp HS , Graham DK . TAM receptor tyrosine kinases: biologic functions, signaling, and potential therapeutic targeting in human cancer. Adv Cancer Res. 2008; 100 (100): 35- 83.

[20]

Colavito, SA . AXL as a target in breast cancer therapy. J Oncol. 2020; 5291952.

[21]

Zhu CJ , Wei YQ , Wei XW . AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019; 18 (1): 153.

[22]

Fridell YWC , Jin Y , Quilliam LA , et al. Differential activation of the Ras/extracellular-signal-regulated protein kinase pathway is responsible for the biological consequences induced by the Axl receptor tyrosine kinase. Mol Cell Biol. 1996; 16 (1): 135- 145.

[23]

Paccez JD , Vasques GJ , Correa RG , et al. The receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target. Oncogene. 2013; 32 (6): 689- 698.

[24]

Tai KY , Shieh YS , Lee CS , Shiah SG , Wu CW . Axl promotes cell invasion by inducing MMP-9 activity through activation of NF-kappaB and Brg-1. Oncogene. 2008; 27 (29): 4044- 4055.

[25]

Burstyn-Cohen T , Maimon A . TAM receptors, phosphatidylserine, inflammation, and cancer. Cell Commun Signal. 2019; 17 (1): 156.

[26]

Caberoy NB , Alvarado G , Bigcas JL , Li W . Galectin-3 is a new MerTK-specific eat-me signal. J Cell Physiol. 2012; 227 (2): 401- 407.

[27]

Caberoy NB , Zhou Y , Li W . Tubby and tubby-like protein 1 are new MerTK ligands for phagocytosis. EMBO J. 2010; 29 (23): 3898- 3910.

[28]

Konishi A , Aizawa T , Mohan A , Korshunov VA , Berk BC . Hydrogen peroxide activates the Gas6-Axl pathway in vascular smooth muscle cells. J Biol Chem. 2004; 279 (27): 28766- 28770.

[29]

Talmadge JE , Fidler IJ . AACR centennial series: the biology of cancer metastasis: historical perspective. Cancer Res. 2010; 70 (14): 5649- 5669.

[30]

Abu-Thuraia A , Gauthier R , Chidiac R , et al. Axl phosphorylates Elmo Scaffold proteins to promote rac activation and cell invasion. Mol Cell Biol. 2015; 35 (1): 76- 87.

[31]

Xu JC , Jia L , Ma HY , Li YP , Ma ZH , Zhao YF . Axl gene knockdown inhibits the metastasis properties of hepatocellular carcinoma via PI3K/Akt-PAK1 signal pathway. Tumor Biol. 2014; 35 (4): 3809- 3817.

[32]

Revach OY , Sandler O , Samuels Y , Geiger B . Cross-talk between receptor tyrosine kinases AXL and ERBB3 regulates invadopodia formation in melanoma cells. Cancer Res. 2019; 79 (10): 2634- 2648.

[33]

Zdzalik-Bielecka D , Poswiata A , Kozik K , et al. The GAS6-AXL signaling pathway triggers actin remodeling that drives membrane ruffling, macropinocytosis, and cancer-cell invasion. Proc Natl Acad Sci USA. 2021; 118 (28): e2024596118.

[34]

Kessenbrock K , Plaks V , Werb Z . Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010; 141 (1): 52- 67.

[35]

Reichl P , Dengler M , van Zijl F , et al. Axl activates autocrine transforming growth factor-beta signaling in hepatocellular carcinoma. Hepatology. 2015; 61 (3): 930- 941.

[36]

Li YY , Tao YW , Gao S , et al. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. EBioMedicine. 2018; 36: 209- 220.

[37]

Antony J , Huang RYJ . AXL-driven EMT state as a targetable conduit in cancer. Cancer Res. 2017; 77 (14): 3725- 3732.

[38]

Polyak K , Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009; 9 (4): 265- 273.

[39]

Puram SV , Tirosh I , Parikh AS , et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell. 2017; 171 (7): 1611- 1624.e24.

[40]

Koorstra JB , Karikari CA , Feldmann G , et al. The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biol Ther. 2009; 8 (7): 618- 626.

[41]

Leconet W , Chentouf M , du Manoir S , et al. Therapeutic activity of anti-AXL antibody against triple-negative breast cancer patient-derived xenografts and metastasis. Clin Cancer Res. 2017; 23 (11): 2806- 2816.

[42]

Asiedu MK , Beauchamp-Perez FD , Ingle JN , Behrens MD , Radisky DC , Knutson KL . AXL induces epithelial-to-mesenchymal transition and regulates the function of breast cancer stem cells. Oncogene. 2014; 33 (10): 1316- 1324.

[43]

Vuoriluoto K , Haugen H , Kiviluoto S , et al. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene. 2011; 30 (12): 1436- 1448.

[44]

Hua WF , Zhao Y , Jin XH , et al. METTL3 promotes ovarian carcinoma growth and invasion through the regulation of AXL translation and epithelial to mesenchymal transition. Gynecol Oncol. 2018; 151 (2): 356- 365.

[45]

Vasan N , Baselga J , Hyman DM . A view on drug resistance in cancer. Nature. 2019; 575 (7782): 299- 309.

[46]

Dufies M , Jacquel A , Belhacene N , et al. Mechanisms of AXL overexpression and function in Imatinib-resistant chronic myeloid leukemia cells. Oncotarget. 2011; 2 (11): 874- 885.

[47]

Ben-Batalla I , Erdmann R , Jorgensen H , et al. Axl blockade by BGB324 inhibits BCR-ABL tyrosine kinase inhibitor-sensitive and -resistant chronic myeloid leukemia. Clin Cancer Res. 2017; 23 (9): 2289- 2300.

[48]

Gioia R , Tregoat C , Dumas PY , et al. CBL controls a tyrosine kinase network involving AXL, SYK and LYN in nilotinib-resistant chronic myeloid leukaemia. J Pathol. 2015; 237 (1): 14- 24.

[49]

Meyer AS , Miller MA , Gertler FB , Lauffenburger DA . The receptor AXL diversifies EGFR signaling and limits the response to EGFR-targeted inhibitors in triple-negative breast cancer cells. Sci Signal. 2013; 6 (287): ra66.

[50]

Vouri M , Croucher DR , Kennedy SP , An Q , Pilkington GJ , Hafizi S . Axl-EGFR receptor tyrosine kinase hetero-interaction provides EGFR with access to pro-invasive signalling in cancer cells. Oncogenesis. 2016; 5 (10): e266.

[51]

McDaniel NK , Iida M , Nickel KP , et al. AXL mediates cetuximab and radiation resistance through tyrosine 821 and the c-ABL kinase pathway in head and neck cancer. Clin Cancer Res. 2020; 26 (16): 4349- 4359.

[52]

Bansal N , Mishra PJ , Stein M , DiPaola RS , Bertino JR . Axl receptor tyrosine kinase is up-regulated in metformin resistant prostate cancer cells. Oncotarget. 2015; 6 (17): 15321- 15331.

[53]

Lin JZ , Wang ZJ , De W , et al. Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer. Oncotarget. 2017; 8 (25): 41064- 41077.

[54]

Ghosh S . Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019; 88: 102925.

[55]

Baize N , Monnet I , Greillier L , et al. Carboplatin plus etoposide versus topotecan as second-line treatment for patients with sensitive relapsed small-cell lung cancer: an open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2020; 21 (9): 1224- 1233.

[56]

Carvalho C , Santos RX , Cardoso S , et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009; 16 (25): 3267- 3285.

[57]

Hainsworth JD , Greco FA . Etoposide: twenty years later. Ann Oncol. 1995; 6 (4): 325- 341.

[58]

Linger RM , Cohen RA , Cummings CT , et al. Mer or Axl receptor tyrosine kinase inhibition promotes apoptosis, blocks growth and enhances chemosensitivity of human non-small cell lung cancer. Oncogene. 2013; 32 (29): 3420- 3431.

[59]

Debruyne DN , Bhatnagar N , Sharma B , et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016; 35 (28): 3681- 3691.

[60]

Zhou L , Liu XD , Sun M , et al. Targeting MET and AXL overcomes resistance to sunitinib therapy in renal cell carcinoma. Oncogene. 2016; 35 (21): 2687- 2697.

[61]

Creedon H , Gomez-Cuadrado L , Tarnauskaite Z , et al. Identification of novel pathways linking epithelial-to-mesenchymal transition with resistance to HER2-targeted therapy. Oncotarget. 2016; 7 (10): 11539- 11552.

[62]

Wu Y , Ginther C , Kim J , et al. Expression of Wnt3 activates Wnt/beta-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol Cancer Res. 2012; 10 (12): 1597- 1606.

[63]

Della Corte CM , Bellevicine C , Vicidomini G , et al. SMO gene amplification and activation of the hedgehog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer. Clin Cancer Res. 2015; 21 (20): 4686- 4697.

[64]

Konen JM , Rodriguez BL , Padhye A , et al. Dual inhibition of MEK and AXL targets tumor cell heterogeneity and prevents resistant outgrowth mediated by the epithelial-to-mesenchymal transition in NSCLC. Cancer Res. 2021; 81 (5): 1398- 1412.

[65]

Pitt JM , Marabelle A , Eggermont A , Soria JC , Kroemer G , Zitvogel L . Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol. 2016; 27 (8): 1482- 1492.

[66]

Son HY , Jeong HK . Immune evasion mechanism and AXL. Front Oncol. 2021; 11: 756225.

[67]

Rothlin CV , Ghosh S , Zuniga EI , Oldstone MBA , Lemke G . TAM receptors are pleiotropic inhibitors of the innate immune response. Cell. 2007; 131 (6): 1124- 1136.

[68]

Tsukita Y , Fujino N , Miyauchi E , et al. Axl kinase drives immune checkpoint and chemokine signalling pathways in lung adenocarcinomas. Mol Cancer. 2019; 18 (1): 24.

[69]

Kasikara C , Kumar S , Kimani S , et al. Phosphatidylserine sensing by TAM receptors regulates AKT-dependent chemoresistance and PD-L1 expression. Mol Cancer Res. 2017; 15 (6): 753- 764.

[70]

Guo ZQ , Li Y , Zhang DD , Ma JY . Axl inhibition induces the antitumor immune response which can be further potentiated by PD-1 blockade in the mouse cancer models. Oncotarget. 2017; 8 (52): 89761- 89774.

[71]

Terry S , Abdou A , Engelsen AST , et al. AXL targeting overcomes human lung cancer cell resistance to NK- and CTL-mediated cytotoxicity. Cancer Immunol Res. 2019; 7 (11): 1789- 1802.

[72]

Liu YT , Lai YH , Lin HH , Chen JH . Lotus seedpod extracts reduced lipid accumulation and lipotoxicity in hepatocytes. Nutrients. 2019; 11 (12): 2895.

[73]

Shen Y , Guan Y , Song X , et al. Polyphenols extract from lotus seedpod (Nelumbo nucifera Gaertn.): phenolic compositions, antioxidant, and antiproliferative activities. Food Sci Nutr. 2019; 7 (9): 3062- 3070.

[74]

Menke K , Schwermer M , Eisenbraun J , Schramm A , Zuzak TJ . Anticancer effects of Viscum album fraxini extract on medulloblastoma cells in vitro. Complement Med Res. 2021; 28 (1): 15- 22.

[75]

Ucar EO , Arda N , Aitken A . Extract from mistletoe, Viscum album L. reduces Hsp27 and 14-3-3 protein expression and induces apoptosis in C6 rat glioma cells. Genet Mol Res. 2012; 11 (3): 2801- 2813.

[76]

Kwon YS , Chun SY , Kim MK , Nan HY , Lee C , Kim S . Mistletoe extract targets the STAT3-FOXM1 pathway to induce apoptosis and inhibits metastasis in breast cancer cells. Am J Chin Med. 2021; 49 (2): 487- 504.

[77]

Kim S , Kim KC , Lee C . Mistletoe (Viscum album) extract targets Axl to suppress cell proliferation and overcome cisplatin- and erlotinib-resistance in non-small cell lung cancer cells. Phytomedicine. 2017; 36: 183- 193.

[78]

Han SY , Zhao W , Han HB , et al. Marsdenia tenacissima extract overcomes Axl- and Met-mediated erlotinib and gefitinib cross-resistance in non-small cell lung cancer cells. Oncotarget. 2017; 8 (34): 56893- 56905.

[79]

Lai DW , Yu SJ , van Ofwegen L , Totzke F , Proksch P , Lin WH . 9,10-Secosteroids, protein kinase inhibitors from the Chinese Gorgonian Astrogorgia sp. Bioorg Med Chem. 2011; 19 (22): 6873- 6880.

[80]

Nie YW , Li Y , Luo L , et al. Phytochemistry and pharmacological activities of the diterpenoids from the genus Daphne. Molecules. 2021; 26 (21): 6598.

[81]

Hong JY , Nam JW , Seo EK , Lee SK . Daphnane diterpene esters with anti-proliferative activities against human lung cancer cells from Daphne genkwa. Chem Pharm Bull (Tokyo). 2010; 58 (2): 234- 237.

[82]

Bang KK , Yun CY , Lee C , et al. Melanogenesis inhibitory daphnane diterpenoids from the flower buds of Daphne genkwa. Bioorg Med Chem Lett. 2013; 23 (11): 3334- 3337.

[83]

Li S , Chou G , Hseu Y , Yang H , Kwan H , Yu Z . Isolation of anticancer constituents from flos genkwa (Daphne genkwa Sieb.et Zucc.) through bioassay-guided procedures. Chem Cent J. 2013; 7 (1): 159.

[84]

Chen Y , Zhao CL , Dong W , et al. Tigliane-and daphnane-type diterpenoids from the buds of Daphne genkwa with their cytotoxic activities. Nat Prod Res. 2022; 37 (18): 1- 7.

[85]

Bae SY , Hong JY , Lee HJ , Park HJ , Lee SK . Targeting the degradation of AXL receptor tyrosine kinase to overcome resistance in gefitinib-resistant non-small cell lung cancer. Oncotarget. 2015; 6 (12): 10146- 10160.

[86]

Dai X , Zhang X , Chen W , et al. Dihydroartemisinin: a potential natural anticancer drug. Int J Biol Sci. 2021; 17 (2): 603- 622.

[87]

Keating GM . Dihydroartemisinin/Piperaquine: a review of its use in the treatment of uncomplicated Plasmodium falciparum malaria. Drugs. 2012; 72 (7): 937- 961.

[88]

Luo J , Zhang Y , Wang Y , et al. Artesunate and dihydroartemisinin inhibit rabies virus replication. Virol Sin. 2021; 36 (4): 721- 729.

[89]

Chen B , Li C , Chang G , Wang H . Dihydroartemisinin targets fibroblast growth factor receptor 1 (FGFR1) to inhibit interleukin 17A (IL-17A)-induced hyperproliferation and inflammation of keratinocytes. Bioengineered. 2022; 13 (1): 1530- 1540.

[90]

Yang DX , Qiu J , Zhou HH , et al. Dihydroartemisinin alleviates oxidative stress in bleomycin-induced pulmonary fibrosis. Life Sci. 2018; 205: 176- 183.

[91]

Li X , Ba Q , Liu Y , et al. Dihydroartemisinin selectively inhibits PDGFRα-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRα protein. Cell Discov. 2017; 3 (1): 17042.

[92]

Cai X , Miao J , Sun R , et al. Dihydroartemisinin overcomes the resistance to osimertinib in EGFR-mutant non-small-cell lung cancer. Pharmacol Res. 2021; 170: 105701.

[93]

Zhang F , Ma Q , Xu Z , et al. Dihydroartemisinin inhibits TCTP-dependent metastasis in gallbladder cancer. J Exp Clin Cancer Res. 2017; 36 (1): 68.

[94]

Lu JJ , Chen SM , Zhang XW , Ding J , Meng LH . The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells. Invest New Drugs. 2011; 29 (6): 1276- 1283.

[95]

Zhou ZH , Chen FX , Xu WR , et al. Enhancement effect of dihydroartemisinin on human gammadelta T cell proliferation and killing pancreatic cancer cells. Int Immunopharmacol. 2013; 17 (3): 850- 857.

[96]

Han W , Duan X , Ni K , Li Y , Chan C , Lin W . Co-delivery of dihydroartemisinin and pyropheophorbide-iron elicits ferroptosis to potentiate cancer immunotherapy. Biomaterials. 2022; 280: 121315.

[97]

Paccez JD , Duncan K , Sekar D , et al. Dihydroartemisinin inhibits prostate cancer via JARID2/miR-7/miR-34a-dependent downregulation of Axl. Oncogenesis. 2019; 8 (3): 14.

[98]

Hansen TB , Kjems J , Damgaard CK . Circular RNA and miR-7 in cancer. Cancer Res. 2013; 73 (18): 5609- 5612.

[99]

Li S , Wei X , He J , et al. The comprehensive landscape of miR-34a in cancer research. Cancer Metastasis Rev. 2021; 40 (3): 925- 948.

[100]

Zielińska A , Alves H , Marques V , et al. Properties, extraction methods, and delivery systems for curcumin as a natural source of beneficial health effects. Medicina. 2020; 56 (7): 336.

[101]

Fu YS , Chen TH , Weng L , Huang L , Lai D , Weng CF . Pharmacological properties and underlying mechanisms of curcumin and prospects in medicinal potential. Biomed Pharmacother. 2021; 141: 111888.

[102]

Anand P , Sundaram C , Jhurani S , Kunnumakkara AB , Aggarwal BB . Curcumin and cancer: an "old-age" disease with an "age-old" solution. Cancer Lett. 2008; 267 (1): 133- 164.

[103]

Wang M , Jiang S , Zhou L , et al. Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signaling pathways and miRNAs. Int J Biol Sci. 2019; 15 (6): 1200- 1214.

[104]

Gallardo M , Kemmerling U , Aguayo F , Bleak TC , Munoz JP , Calaf GM . Curcumin rescues breast cells from epithelial-mesenchymal transition and invasion induced by anti-miR-34a. Int J Oncol. 2020; 56 (2): 480- 493.

[105]

Ma J , Fang B , Zeng F , et al. Curcumin inhibits cell growth and invasion through up-regulation of miR-7 in pancreatic cancer cells. Toxicol Lett. 2014; 231 (1): 82- 91.

[106]

Fu J , Wang Z , Huang L , et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother Res. 2014; 28 (9): 1275- 1283.

[107]

Wang CH , Lin CY , Chen JS , et al. Karnofsky performance status as a predictive factor for cancer-related fatigue treatment with astragalus polysaccharides (PG2) injection-a double blind, multi-center, randomized phase IV study. Cancers. 2019; 11 (2): 128.

[108]

Wu J , Yu J , Wang J , et al. Astragalus polysaccharide enhanced antitumor effects of Apatinib in gastric cancer AGS cells by inhibiting AKT signalling pathway. Biomed Pharmacother. 2018; 100: 176- 183.

[109]

Bamodu OA , Kuo KT , Wang CH , et al. Astragalus polysaccharides (PG2) Enhances the M1 polarization of macrophages, functional maturation of dendritic cells, and T cell-mediated anticancer immune responses in patients with lung cancer. Nutrients. 2019; 11 (10): 2264.

[110]

Yang YL , Lin ZW , He PT , Nie H , Yao QY , Zhang SY . Inhibitory effect of astragalus polysaccharide combined with cisplatin on cell cycle and migration of nasopharyngeal carcinoma cell lines. Biol Pharm Bull. 2021; 44 (7): 926- 931.

[111]

Liao CH , Yong CY , Lai GM , et al. Astragalus polysaccharide (PG2) suppresses macrophage migration inhibitory factor and aggressiveness of lung adenocarcinoma cells. Am J Chin Med. 2020; 48 (6): 1491- 1509.

[112]

Soumoy L , Ghanem GE , Saussez S , Journe F . Bufalin for an innovative therapeutic approach against cancer. Pharmacol Res. 2022; 184: 106442.

[113]

Cheng CS , Wang J , Chen J , et al. New therapeutic aspects of steroidal cardiac glycosides: the anticancer properties of Huachansu and its main active constituent Bufalin. Cancer Cell Int. 2019; 19 (1): 92.

[114]

Zou D , Song J , Deng M , et al. Bufalin inhibits peritoneal dissemination of gastric cancer through endothelial nitric oxide synthase-mitogen-activated protein kinases signaling pathway. FASEB J. 2021; 35 (5): e21601.

[115]

Yang H , Liu Y , Zhao MM , et al. Therapeutic potential of targeting membrane-spanning proteoglycan SDC4 in hepatocellular carcinoma. Cell Death Dis. 2021; 12 (5): 492.

[116]

Qian L , Su H , Wang G , Li B , Shen G , Gao Q . Anti-tumor activity of bufalin by inhibiting c-MET mediated MEK/ERK and PI3K/AKT signaling pathways in gallbladder cancer. J Cancer. 2020; 11 (11): 3114- 3123.

[117]

Fang K , Zhan Y , Zhu R , et al. Bufalin suppresses tumour microenvironment-mediated angiogenesis by inhibiting the STAT3 signalling pathway. J Transl Med. 2021; 19 (1): 383.

[118]

Wang H , Zhang C , Ning Z , Xu L , Zhu X , Meng Z . Bufalin enhances anti-angiogenic effect of sorafenib via AKT/VEGF signaling. Int J Oncol. 2016; 48 (3): 1229- 1241.

[119]

Xie CM , Chan WY , Yu S , Zhao J , Cheng CH . Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation. Free Radic Biol Med. 2011; 51 (7): 1365- 1375.

[120]

Yin JQ , Shen JN , Su WW , et al. Bufalin induces apoptosis in human osteosarcoma U-2OS and U-2OS methotrexate300-resistant cell lines. Acta Pharmacol Sin. 2007; 28 (5): 712- 720.

[121]

Yu CH , Kan SF , Pu HF , Jea Chien E , Wang PS . Apoptotic signaling in bufalin- and cinobufagin-treated androgen-dependent and -independent human prostate cancer cells. Cancer Sci. 2008; 99 (12): 2467- 2476.

[122]

Qi F , Inagaki Y , Gao B , et al. Bufalin and cinobufagin induce apoptosis of human hepatocellular carcinoma cells via Fas- and mitochondria-mediated pathways. Cancer Sci. 2011; 102 (5): 951- 958.

[123]

Zhu Z , Sun H , Ma G , et al. Bufalin induces lung cancer cell apoptosis via the inhibition of PI3K/Akt pathway. Int J Mol Sci. 2012; 13 (2): 2025- 2035.

[124]

Kim NY , Suh YA , Kim S , Lee C . Bufalin down-regulates Axl expression to inhibit cell proliferation and induce apoptosis in non-small-cell lung cancer cells. Biosci Rep. 2020; 40 (4): BSR20193959.

[125]

Nguyen HN , Ullevig SL , Short JD , Wang L , Ahn YJ , Asmis R . Ursolic acid and related analogues: triterpenoids with broad health benefits. Antioxidants. 2021; 10 (8): 1161.

[126]

Iqbal J , Abbasi BA , Ahmad R , et al. Ursolic acid a promising candidate in the therapeutics of breast cancer: current status and future implications. Biomed Pharmacother. 2018; 108: 752- 756.

[127]

López-Hortas L , Pérez-Larrán P , González-Muñoz MJ , Falqué E , Domínguez H . Recent developments on the extraction and application of ursolic acid. Food Res Int. 2018; 103: 130- 149.

[128]

Li, J , Dai C , Shen L . Ursolic acid inhibits epithelial-mesenchymal transition through the Axl/NF-κB pathway in gastric cancer cells. Evid Based Complement Alternat Med. 2019; 2019: 2474805.

[129]

Goufo P , Singh RK , Cortez I . A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants. 2020; 9 (5): 398.

[130]

Liu T , Liu P , Ding F , et al. Ampelopsin reduces the migration and invasion of ovarian cancer cells via inhibition of epithelial-to-mesenchymal transition. Oncol Rep. 2015; 33 (2): 861- 867.

[131]

Qi S , Kou X , Lv J , Qi Z , Yan L . Ampelopsin induces apoptosis in HepG2 human hepatoma cell line through extrinsic and intrinsic pathways: involvement of P38 and ERK. Environ Toxicol Pharmacol. 2015; 40 (3): 847- 854.

[132]

Zhou Y , Liang X , Chang H , et al. Ampelopsin-induced autophagy protects breast cancer cells from apoptosis through Akt-mTOR pathway via endoplasmic reticulum stress. Cancer Sci. 2014; 105 (10): 1279- 1287.

[133]

Huang C , Huang YL , Wang CC , Pan YL , Lai YH , Huang HC . Ampelopsins A and C induce apoptosis and metastasis through downregulating AxL, TYRO3, and FYN expressions in MDA-MB-231 breast cancer cells. J Agric Food Chem. 2019; 67 (10): 2818- 2830.

[134]

Shi H , Shi D , Wu Y , Shen Q , Li J . Qigesan inhibits migration and invasion of esophageal cancer cells via inducing connexin expression and enhancing gap junction function. Cancer Lett. 2016; 380 (1): 184- 190.

[135]

Kong L , Wu Z , Zhao Y , et al. Qigesan reduces the motility of esophageal cancer cells via inhibiting Gas6/Axl and NF-kappaB expression. Biosci Rep. 2019; 39 (6): BSR20190850.

[136]

Kong L , Lu X , Chen X , et al. Qigesan inhibits esophageal cancer cell invasion and migration by inhibiting Gas6/Axl-induced epithelial-mesenchymal transition. Aging (Albany NY). 2020; 12 (10): 9714- 9725.

[137]

Yao CJ , Chow JM , Lin PC , et al. Activation of p53/miR-34a tumor suppressor Axis by Chinese herbal formula JP-1 in A549 lung 188-AXL PROMOTES MALIGNANT PHENOTYPESadenocarcinoma cells. Evid Based Complement Alternat Med. 2016; 2016 (1): 5989681.

[138]

Zhang J , Hu K , Di L , et al. Traditional herbal medicine and nanomedicine: converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev. 2021; 178: 113964.

[139]

Xiang YN , Cuo ZM , Zhu PF , Chen J , Huang YY . Traditional Chinese medicine as a cancer treatment: modern perspectives of ancient but advanced science. Cancer Med. 2019; 8 (5): 1958- 1975.

[140]

Huang XM , Yang ZJ , Xie Q , Zhang ZK , Zhang H , Ma JY . Natural products for treating colorectal cancer: a mechanistic review. Biomed Pharmacother. 2019; 117: 109142.

[141]

Kim A , Ha J , Kim J , et al. Natural products for pancreatic cancer treatment: from traditional medicine to modern drug discovery. Nutrients. 2021; 13 (11): 3801.

RIGHTS & PERMISSIONS

The Author(s). Advanced Chinese Medicine published by John Wiley & Sons Australia, Ltd on behalf of Higher Education Press.

AI Summary AI Mindmap
PDF (885KB)

813

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/