Carbon accumulation within anthropogenically impacted Peruvian Coastal saltmarshes
Héctor Aponte , Rodrigo Castro , Renzo Gonzales , Jorge Cardich , Wilson Machado , Christian J. Sanders , Matthieu Carre , Alexander Pérez
Anthropocene Coasts ›› 2025, Vol. 8 ›› Issue (1) : 42
Carbon accumulation within anthropogenically impacted Peruvian Coastal saltmarshes
Coastal wetlands are critical ecosystems due to the wide range of ecosystem services they provide. This study investigates the accumulation of total organic carbon (TOC) and total nitrogen (TN) in sediment cores from anthropogenically impacted saltmarsh wetlands of Puerto Viejo (PV) and Ventanilla ( () from Peru. Sediment cores, each 30 cm in length, were collected by duplicate from both sites and analyzed for TOC, TN, and stable isotopes (δ13C and δ15N). Sediment accumulation rates (SAR) were determined using the Constant Flux Constant Supply (CFCS) model, and carbon and nitrogen accumulation rates were subsequently calculated based on SAR and elemental concentrations. The SAR were ~ 3.4 mm yr⁻1 in PV and ~ 3.3 mm yr⁻1 in VEN, values lower than the global average for coastal marshes (6.0 mm yr⁻1), yet closer to those reported for non-impacted systems (4.0 mm yr⁻1). Beginning in the early 1990´s, anthropogenic impacts such as urban expansion and increased sewage discharge coincided with elevated TOC and TN accumulation rates within both study areas. Maximum accumulation rates for TOC and TN in PV reached 235 ± 49 g m⁻2 yr⁻1 and 28 ± 3 g m⁻2 yr⁻1, while in VEN reached 459 ± 99 g m⁻2 yr⁻1 and 23 ± 9 g m⁻2 yr⁻1, respectively. Post-1990´s, markedly lighter δ13C values in PV and VEN ranged in − 25.2 ± 1.6 ‰ and − 19.3 ± 3.5 ‰, respectively, indicating increased inputs of non-terrestrial material in sediments. Concurrently, elevated δ15N values in PV and VEN ranged + 11.4 ± 0.65‰ and + 7.37 ± 8.16‰, respectively, suggesting that the carbon sources were derived from a mixture of terrestrial vegetation and algae, stimulated by nutrient enrichment linked to anthropogenic activity. These findings highlight the pivotal role of coastal wetlands in accumulating carbon from both natural and anthropogenic sources, reinforcing the imperative for their conservation amid escalating global human-induced pressures.
Coastal wetlands / Carbon accumulation / Organic matter source / Urban expansion / Anthropogenic impacts
| [1] |
Abril-Hernández JM (2023) 210Pb-dating of sediments with models assuming a constant flux: CFCS, CRS, PLUM, and the novel χ-mapping. Review, performance tests, and guidelines. J Environ Radioact 268-269. https://doi.org/10.1016/j.jenvrad.2023.107248 |
| [2] |
Alongi DM (2014) Carbon Cycling and Storage in Mangrove Forests. Annu Rev Mar Sci 6(Volume 6, 2014):Article Volume 6. https://doi.org/10.1146/annurev-marine-010213-135020 |
| [3] |
|
| [4] |
|
| [5] |
Aponte H, Gonzales S, Gomez A (2020) Impulsores de cambio en los humedales de América Latina: El caso de los humedales costeros de Lima. South Sustain 1(2):Article 2. https://doi.org/10.21142/SS-0102-2020-023 |
| [6] |
Breithaupt JL, Smoak JM, Byrne RH, Waters MN, Moyer RP, Sanders CJ (2018) Avoiding timescale bias in assessments of coastal wetland vertical change. Limnol Oceanogr 63(Suppl 1):Article Suppl 1. https://doi.org/10.1002/lno.10783 |
| [7] |
|
| [8] |
|
| [9] |
Chmura GL, Anisfeld SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17(4). https://doi.org/10.1029/2002GB001917 |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Gomez A, Aponte H, Gonzáles S (2023) ¿Cómo proteger los humedales costeros peruanos? Una respuesta a partir de un modelo conceptual de sus impulsores de cambio. Boletín de Investigaciones Marinas y Costeras 52(2):Article 2. https://doi.org/10.25268/bimc.invemar.2023.52.2.1218 |
| [14] |
Hao Q, Song Z, Zhang X, He D, Guo L, van Zwieten L, Yu C, Wang Y, Wang W, Fang Y (2024) Organic blue carbon sequestration in vegetated coastal wetlands: Processes and influencing factors. Earth Sci Rev 104853. https://doi.org/10.1016/j.earscirev.2024.104853 |
| [15] |
|
| [16] |
Kendall C, Elliott EM, Wankel SD (2007) Tracing Anthropogenic Inputs of Nitrogen to Ecosystems. En Stable Isotopes in Ecology and Environmental Science (pp. 375–449). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470691854.ch12 |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
Mitsch WJ, Mander Ü (2018) Wetlands and carbon revisited. J Ecol Eng 114:1–6. https://doi.org/10.1016/j.ecoleng.2017.12.027 |
| [23] |
Moschella P (2012) Variación y protección de humedales costeros frente a procesos de urbanización: Casos Ventanilla y Puerto Viejo [Tesis para optar el título de Magister en Desarrollo Ambiental, Pontificia Universidad Católica del Perú]. https://tesis.pucp.edu.pe/items/dbcd050b-0d67-49db-a746-124fe46e46d7 |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
Pérez A, Machado W, Sanders CJ (2021) Anthropogenic and environmental influences on nutrient accumulation in mangrove sediments. Mar Pollut Bull 165:112174. https://doi.org/10.1016/j.marpolbul.2021.112174 |
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
Sanchez-Cabeza JA, y Ruiz-Fernández AC (2012) 210Pb sediment radiochronology: An integrated formulation and classification of dating models. Geochimica et Cosmochimica Acta 82(1):183–200. https://doi.org/10.1016/j.gca.2010.12.024 |
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
Soto-Ceferino R, Aponte H, López-Guiop I, Delgado-Galván C, Apeño A (2025) Geografías en Conflicto: Superposición de actividades extractivas en los humedales peruanos. Tecnología y ciencias del agua 16(4). https://doi.org/10.24850/j-tyca-16-3-9 |
| [42] |
|
The Author(s)
/
| 〈 |
|
〉 |