Evolution of the Porong River Estuary, Indonesia: Morphological Changes of Lusi Island through Sediment Modeling and Time-Series Interpretation of MNDWI

Agus Sufyan , Rudhy Akhwady , Dini Purbani , Aprizon Putra , Ulung Jantama Wisha , Kintan Nurani Ekawati , Safar Dody , Sari Nova , Dendy Mahabror , Sujantoko , Widya Prarikeslan , Andik Dwi Muttaqin , Moch Shofwan

Anthropocene Coasts ›› 2025, Vol. 8 ›› Issue (1)

PDF
Anthropocene Coasts ›› 2025, Vol. 8 ›› Issue (1) DOI: 10.1007/s44218-025-00101-0
Research Article
research-article

Evolution of the Porong River Estuary, Indonesia: Morphological Changes of Lusi Island through Sediment Modeling and Time-Series Interpretation of MNDWI

Author information +
History +
PDF

Abstract

A sedimentation issue in the estuary of Porong induced by Lapindo hot mud discharge had caused a significant morphological alteration. This study aims to determine the geomorphological evolution in the Porong Estuary and the geochronological formation of Lusi Island. This study employed a numerical modeling approach, consisting of flow and sediment transport modeling modules (Delft3D-FLOW and Delft3D-SED), with a curvilinear grid resolution of 25–50 m over a 5 × 6 km domain. A satellite imagery processing was also performed using multitemporal Landsat data (2000–2024) analyzed using the Modified Normalized Difference Water Index (MNDWI), followed by binary classification and vector digitization. The results show that sediment accumulation of ± 0.06 m in 15 days, increasing to over 1 m after four years (MORFAC 96), with land expansion confirmed by satellite data from 6.29 hectares in 2000 to 147.86 hectares in 2024. Of particular concern, the increasing sediment thickness from 0.0026 m to 0.38 m over a 14-year equivalent simulation suggests a sustained process of geomorphological development. The findings of this study emphasize significant sedimentation trends and the dynamics of the estuarine environment in the Porong Estuary. It is, therefore, crucial to implement coastal hazard mitigation strategies, effective land use planning, and environmental monitoring to minimize further environmental degradation resulting from excessive sedimentation.

Keywords

Sediment transport / Estuarine morphology / Multitemporal landsat / Lusi Island / Lapindo

Cite this article

Download citation ▾
Agus Sufyan, Rudhy Akhwady, Dini Purbani, Aprizon Putra, Ulung Jantama Wisha, Kintan Nurani Ekawati, Safar Dody, Sari Nova, Dendy Mahabror, Sujantoko, Widya Prarikeslan, Andik Dwi Muttaqin, Moch Shofwan. Evolution of the Porong River Estuary, Indonesia: Morphological Changes of Lusi Island through Sediment Modeling and Time-Series Interpretation of MNDWI. Anthropocene Coasts, 2025, 8(1): DOI:10.1007/s44218-025-00101-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AiJ, ZhangC, ChenL, LiD. Mapping annual land use and land cover changes in the Yangtze Estuary Region using an object-based classification framework and Landsat time series data. Sustainability, 2020, 122659.

[2]

Akhwady R, Islami A, Risandi J, Sufyan A, Indriasari VY (2021) Nearshore circulation dynamic during various monsoon across Porong River Estuary. In: 2021 IEEE Ocean Engineering Technology and Innovation Conference: Ocean Observation, Technology and Innovation in Support of Ocean Decade of Science, pp 25–29. IEEE. https://doi.org/10.1109/OETIC53770.2021.9733739

[3]

AminAFFenomena munculnya Pulau Sarinah bagi masyarakat Dusun Tlocor Kelurahan Kedungpandan Kecamatan Jabon Sidoarjo dari tinjauan teori fungsional struktural Agil Talcott Parssons, 2017, Thesis. Universitas Islam Negeri Sunan Ampel Surabaya.

[4]

Andika N (2021) Propagation of the Sidoarjo mud in the Porong River, East Java, Indonesia. Dissertation, Colorado State University

[5]

BrownE, CollingA, ParkD, PhillipsJ, RotheryD, WrightJOcean circulation, 20012Oxford. Butterworth-Heinemann.

[6]

Dalimunthe KL (2024) Breathing in the mud: Resilience and traumas of Porong communities affected by the Lapindo Mudflow Disaster, East Java, Indonesia. Dissertation, Radboud Universiteit Nijmegen

[7]

Dejeans BS (2023) Lagrangian observations and numerical modelling of hydrodynamics, turbulence and sediment transport in a tidal river. Dissertation, The University of Waikato

[8]

Dewata I, Putra A, Hamdi, Hasmira MH, Driputfany DM, Fajrin, Yulius H, Hidayat M, Yusran R, Arman (2024) Water quality of Batang Merao Watershed and implementation of Landsat 8 OLI for the transparency of Lake Kerinci waters. J Sustain Sci Manag 19(4):110–121. https://doi.org/10.46754/jssm.2024.04.009

[9]

DrakeP. Indonesia and the politics of disaster: power and representation in Indonesia’s mud volcano. Routledge, London, 2016.

[10]

DrakeP. Indonesia’s accidental island: composing the environment in the echo of disaster. Environ Commun, 2018, 12(2): 261-273.

[11]

Dyer KR (1995) Sediment transport processes in estuaries. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Dev Sedimentol 53:423–449. https://doi.org/10.1016/S0070-4571(05)80034-2

[12]

FachrudianaAA, RachmadiartiF. The diversity of tolerant fish in the coastal waters of Lusi Island. Sidoarjo Regency. J Phys Conf Ser, 2021, 1899. 012026

[13]

Febriandi, Fatimah S, Triyatno, Hermon D, Putra A, Mutmainah H, Arifin T, Akhwady R (2025) Predicting of land cover changes until 2030 and assessing sustainability status in the Mandeh region, Indonesia. Geographia Technica 20(1):263–280. https://doi.org/10.21163/GT_2025.201.18

[14]

Fitrianto AR (2019) The socio-economic impacts of the Porong mud volcano on the shrimp fisheries sector in Sidoarjo District, East Java Province, Indonesia. Dissertation, Curtin University

[15]

GhoshMK, KumarL, RoyC. Monitoring the coastline change of Hatiya Island in Bangladesh using remote sensing techniques. ISPRS J Photogramm Remote Sens, 2015, 101: 137-144.

[16]

Gosasang V, Chandraprakaikul W, Kiattisin S (2012) A comparison of statistical technique and neural networks forecasting techniques for container throughput in Thailand. In: Proc Int Forum on Shipping, Ports and Airports (IFSPA) 2012: Transport Logistics for Sustainable Growth at a New Level, pp 205–213

[17]

GuJ, ChenW, QinX, MaDQ, WangXL, YangJZ. Numerical simulation of tidal current in Hengsha Passage of Changjiang River Estuary using Delft3D-FLOW. Adv Mater Res, 2012, 610–613: 1237-1241.

[18]

HaleRP, OgstonAS, WalshJP, OrpinAR. Sediment transport and event deposition on the Waipaoa River Shelf, New Zealand. Cont Shelf Res, 2014, 86: 52-65.

[19]

HoitinkAJF, JayDA. Tidal river dynamics: implications for deltas. Rev Geophys, 2016, 54(1): 240-272.

[20]

Ikhwan, Triyatno, Putra A, Syah N (2025) Dynamics of LULC changes in communal lands: A socio-cultural and spatial analysis in Bukittinggi City, Indonesia. Geographia Technica 20(1):112–126. https://doi.org/10.21163/GT_2025.201.09

[21]

JänenI, AdiS, JennerjahnTC. Spatio–temporal variations in nutrient supply of the Brantas River to Madura Strait coastal waters, Java, Indonesia, related to human alterations in the catchment and a mud volcano. Asian J Water Environ Pollut, 2013, 10(1): 73-93.

[22]

Kure S, Udo K, Umeda M, Mano A, Tanaka H (2014) Investigation of morphological changes in the Porong River, Indonesia, induced by mud inflow from the LUSI mud volcano. In: Proc Indo-Japan Workshop on River Mouths, Tidal Flats and Lagoons, pp 26–33

[23]

LeonardiN, KolkerAS, FagherazziS. Interplay between river discharge and tides in a delta distributary. Adv Water Resour, 2015, 80: 69-78.

[24]

LesserGR, RoelvinkJA, van KesterJATM, StellingGS. Development and validation of a three-dimensional morphological model. Coast Eng, 2004, 51: 883-915.

[25]

Li J, Meng Y, Li Y, Cui Q, Yang X, Tao C, Wang Z, Li L, Zhang W (2022) Accurate water extraction using remote sensing imagery based on normalized difference water index and unsupervised deep learning. J Hydrol 612(Part B):128202. https://doi.org/10.1016/j.jhydrol.2022.128202

[26]

LinC, SuJ, XuB, TangQ. Long-term variations of temperature and salinity of the Bohai Sea and their influence on its ecosystem. Prog Oceanogr, 2001, 49(1–4): 7-19.

[27]

LuanHL, DingPX, WangZB, GeJZ, YangSL. Decadal morphological evolution of the Yangtze estuary in response to river input changes and estuarine engineering projects. Geomorphology, 2016, 265: 12-23.

[28]

LyddonC, BrownJM, LeonardiN, PlaterAJ. Flood hazard assessment for a hyper-tidal estuary as a function of tide-surge-morphology interaction. Estuaries Coasts, 2018, 41(6): 1565-1586.

[29]

MaG, ShiF, LiuS, QiD. Migration of sediment deposition due to the construction of large-scale structures in Changjiang Estuary. Appl Ocean Res, 2013, 43: 148-156.

[30]

MandangI, YanagiT. Tide and tidal current in the Mahakam estuary, East Kalimantan. Indones Coast Mar Sci, 2008, 32(1): 1-8

[31]

MathewR, WinterwerpJC. Morphodynamic modeling and morphological upscaling in a fine sediment system. Adv Water Resour, 2022, 166. 104224

[32]

MendesJ, RuelaR, PicadoA, PinheiroJP, RibeiroAS, PereiraH, DiasJM. Modeling dynamic processes of Mondego Estuary and Óbidos Lagoon using Delft3D. J Mar Sci Eng, 2021, 9191.

[33]

Minata ZS, Rokhim DA, Nenohai JA, Agustina NI, Islamiyah KK, Ronggopuro B, Utomo Y (2023) The potential and carrying capacity of Lusi Sidoarjo Island as an education and conservation-based tourism. J Nat Resour Environ Manag 14(1):Article 13. https://doi.org/10.29244/jpsl.14.1.13

[34]

MutangaO, KumarLGoogle Earth Engine Applications Remote Sens, 2019, 115591.

[35]

Padawangi R (2016) Muddy resistance: Community empowerment in mudflow disaster governance in Porong, Sidoarjo, Indonesia. In: Miller M, Douglass M (eds) Disaster governance in urbanising Asia, Chap 4. Springer. https://doi.org/10.1007/978-981-287-649-2_4

[36]

PonteNI, WhiteheadPA, HayesCM. The effect of freshwater flow on siltation in the Humber Estuary, northeast UK. Estuar Coast Shelf Sci, 2004, 60(2): 241-249.

[37]

Putra A, Hermon D, Yulius, Prarikeslan W, Syarief A, Ridwan NNH, Arifin T, Febriandi, Damanhuri H, Widodo T, Dermawan A (2024) Assessment of seawater quality and environmental sustainability for shipwreck diving tourism: A case study of MV Boelongan Nederland in Mandeh Bay, Indonesia. Geogr Environ Sustain 17(4):171–182. https://doi.org/10.24057/2071-9388-2024-3469

[38]

RadAM, KreitlerJ, SadeghM. Augmented normalized difference water index for improved surface water monitoring. Environ Model Softw, 2021, 140. 105030

[39]

Rahman AM, Purbani D, Agus SB, Arifin T, Yulius, Putra A, Heriati A, Prihantono J, Akhwady R, Sufyan A, Mustikasari E, Purnamaningtyas SE, Rahmania R, Ramdhan M, Ningsih A, Sadad S, Tjahjo DWH (2025) Hydrodynamic modeling of pollutant distributions from the Bera Watershed and its impact to the coastal area of Saleh Bay, West Nusa Tenggara, Indonesia. Geographia Technica 20(2):31–51. https://doi.org/10.21163/GT_2025.202.03

[40]

RashidMB. Monitoring of drainage system and waterlogging area in the human-induced Ganges-Brahmaputra tidal delta plain of Bangladesh using MNDWI index. Heliyon, 2023, 96. e17412

[41]

Roelvink D, Reniers A, van Dongeren A, van Thiel Vries J, McCall R, Lescinski J (2009) Modelling storm impacts on beaches, dunes and barrier islands. Coast Eng 56(11–12):1133–1152. https://doi.org/10.1016/j.coastaleng.2009.08.006

[42]

RöhrsJ, SutherlandG, JeansG, BedingtonM, SperrevikAK, DagestadKF. Surface currents in operational oceanography: Key applications, mechanisms, and methods. J Oper Oceanogr, 2023, 16(1): 60-88.

[43]

Rosyadewi R, Hidayah Z (2020) Perbandingan laju sedimentasi dan karakteristik sedimen di muara Socah Bangkalan dan Porong Sidoarjo. Juvenile 1(1):1–8. https://doi.org/10.21107/juvenil.v1i1.6832

[44]

SantosoEB, UmiliaE, SiswantoVK. Willingness to pay for Lusi Island ecotourism development and mangrove conservation. IOP Conf Ser Earth Environ Sci, 2024, 1353. 012010

[45]

Scanlan N (2022) Building barriers: Elucidating the sediment trapping properties of mangroves and their relevance for ecosystem service provision. Literature review, Master’s programme, Bio-Inspired Innovation, Utrecht University

[46]

ShiF, LiM. Assessing land cover and ecological quality changes under the new-type urbanization from multi-source remote sensing. Sustainability, 2021, 1321. 11979

[47]

SimarmataN, WikantikaK, TariganTA, AldyansyahM, TohirRK, PutraA. Comparative analysis of reflectance values on Sentinel-2A image with field spectroradiometer in mangrove forest on East Coast Lampung. AIP Conf Proc, 2024, 30011. 090001

[48]

Soerjawo PA, Maryanto TI (2017) Kajian polaaruslaut dan distribusisedimen di perairan Pantai Muara Kamal, Jakarta Utara. J Ris Hidrografi 1(1):34–42. https://doi.org/10.26760/jrh.v1i1.1335

[49]

SuiL, WangJ, YangX, WangZ. Spatial-temporal characteristics of coastline changes in Indonesia from 1990 to 2018. Sustainability, 2020, 1283195.

[50]

ThrushSF, DaytonPK. Disturbance to marine benthic habitats by trawling and dredging: implications for marine biodiversity. Annu Rev Ecol Evol Syst, 2002, 33: 449-473.

[51]

Wang ZB, Van Maren DS, Ding PX, Yang SL, Van Prooijen BC, De Vet PLM, Winterwerp JC, De Vriend HJ, Stive MJF, He Q (2015) Human impacts on morphodynamic thresholds in estuarine systems. Cont Shelf Res 111(Part B):174–183. https://doi.org/10.1016/j.csr.2015.08.009

[52]

WidyatamaPR, TaslikhanM, HudaN. Tlocor marine tourism–Lusi Island as a means of environmental conservation and empowerment of the surrounding community in Sidoarjo. Prog Soc Dev, 2025, 6(1): 274-286

[53]

WishaUJ, WijayaYJ, HisakiY. Real-time properties of hydraulic jump off a tidal bore, its generation and transport mechanisms: a case study of the Kampar River Estuary. Indonesia Water, 2022, 14162561.

[54]

Wisha UJ, Wijaya YJ, Hisaki Y (2025) Tidal regime deformation due to sea level rise in the Malacca Strait: Its impact on tidal bore generation in macro-tidal estuaries. Mar Geod 1–35. https://doi.org/10.1080/01490419.2025.2482099

[55]

WolanskiE, ElliottMEstuarine ecohydrology: An introduction, 2ndedn, 2016, Amsterdam. Elsevier.

[56]

XuH. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int J Remote Sens, 2006, 27(14): 3025-3033.

[57]

YeWM, XuL, ChenB, ChenYG, YeB, CuiYJ. An approach based on two-phase flow phenomenon for modeling gas migration in saturated compacted bentonite. Eng Geol, 2014, 169: 124-132.

[58]

ZajączkowskiM, Włodarska-KowalczukM. Dynamic sedimentary environments of an Arctic glacier-fed river estuary (Adventfjorden, Svalbard): I. Flux, deposition, and sediment dynamics. Estuar Coast Shelf Sci, 2007, 74(1–2): 285-296.

[59]

ZhangH, GorelickSM, ZimbaPV, ZhangX. A remote sensing method for estimating regional reservoir area and evaporative loss. J Hydrol, 2017, 555: 213-227.

[60]

ZhuYThe utilization of Delft3D model to relate the coastal hydrodynamics and water quality with the illustration of Yong River Estuary in the southeast of China, 2022, Thesis. University of Nottingham.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

193

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/