PDF
Abstract
Dark carbon fixation (DCF) is an integral component of the global carbon sink. However, quantitative data on its contribution to total carbon fixation in estuaries are scarce, and factors driving DCF remain under exploration. In this study, radio-14C labeling and molecular techniques were employed to investigate the temporal-spatial distribution of DCF and photosynthesis rates in the Yangtze Estuary and its adjacent coastal areas (YEA), along with the potential microorganisms involved. DCF rates ranged from 0.17 to 3.79 μmol C L−1 h−1 in the YEA, accounting for 15.4–97.7% of integrated total daily carbon fixation, suggesting the large variability in both DCF rates and their contributions to the carbon sink. An estimate based on 15NH4Cl labeling experiments revealed that the contribution of DCF by ammonia-oxidizing microorganisms was low (< 3.97%) in surface waters of the YEA. Bacteria bearing the cbbL-IA&IC gene were the potential essential contributors to DCF, while eukaryotic phytoplankton harboring the cbbL-ID gene may also contribute to DCF through light-independent β-carboxylation. DCF rates were mainly influenced by nutrients, particulate organic carbon, and salinity, which affect microbial abundance. Our findings underscore the importance and variability of the DCF process in human-impacted estuarine and coastal waters, contributing to a better understanding of microbial carbon fixation processes and their potential mechanisms.
Keywords
Dark carbon fixation
/
Photosynthesis
/
Ammonia oxidation
/
Estuarine and coastal waters
/
Aquatic microorganisms
Cite this article
Download citation ▾
Ruoxuan Cui, Tieqiang Mao, Shuangshuang Ping, Yafei Ou, Hongpo Dong.
Substantial dark carbon fixation contributes to carbon sink in human-impacted estuarine and coastal waters.
Anthropocene Coasts, 2025, 8(1): 21 DOI:10.1007/s44218-025-00091-z
| [1] |
AkinyedeR, TaubertM, SchrumpfM, TrumboreS, KüselK. Dark CO2 fixation in temperate beech and pine forest soils. Soil Biol Biochem, 2022, 165, ArticleID: 108526
|
| [2] |
AlfreiderA, BaumerA, BogenspergerT, PoschT, SalcherMM, SummererM. CO2 assimilation strategies in stratified lakes: diversity and distribution patterns of chemolithoautotrophs. Environ Microbiol, 2017, 19(7): 2754-2768
|
| [3] |
AlfreiderA, GrimusV, LugerM, EkbladA, SalcherMM, SummererM. Autotrophic carbon fixation strategies used by nitrifying prokaryotes in freshwater lakes. FEMS Microbiol Ecol, 2018, 94(10): 163
|
| [4] |
Alonso-SáezL, GalandPE, CasamayorEO, Pedrós-AlióC, BertilssonS. High bicarbonate assimilation in the dark by Arctic bacteria. ISME J, 2010, 4(12): 1581-1590
|
| [5] |
AlothmanA, Lopez-SandovalD, DuarteCM, AgustiS. Bacterioplankton dark CO2 fixation in oligotrophic waters. Biogeosciences, 2023, 20(17): 3613-3624
|
| [6] |
AnderssonMGI, BrionN, MiddelburgJJ. Comparison of nitrifier activity versus growth in the Scheldt estuary — a turbid, tidal estuary in northern Europe. Aquat Microb Ecol, 2006, 42(2): 149-158
|
| [7] |
BaltarF, HerndlGJ. Ideas and perspectives: Is dark carbon fixation relevant for oceanic primary production estimates?. Biogeosciences, 2019, 16(19): 3793-3799
|
| [8] |
BayerB, VojvodaJ, ReinthalerT, ReyesC, PintoM, HerndlGJ. Nitrosopumilus adriaticus sp. nov. and Nitrosopumilus piranensis sp. nov., two ammonia-oxidizing archaea from the Adriatic Sea and members of the class Nitrososphaeria. Int J Syst Evol Microbiol, 2019, 69(7): 1892-1902
|
| [9] |
BéjàO, SuzukiMT, HeidelbergJF, NelsonWC, PrestonCM, HamadaT, et al.. Unsuspected diversity among marine aerobic anoxygenic phototrophs. Nature, 2002, 415(6872): 630-633
|
| [10] |
BergIA. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl Environ Microbiol, 2011, 77(6): 1925-1936
|
| [11] |
BillenG. Evaluation of nitrifying activity in sediments by dark 14C-bicarbonate incorporation. Water Res, 1976, 10(1): 51-57
|
| [12] |
BräuerSL, KranzlerK, GoodsonN, MurphyD, SimonHM, BaptistaAM, TeboBM. Dark carbon fixation in the Columbia River’s estuarine turbidity maxima: molecular characterization of red-type cbbL genes and measurement of DIC uptake rates in response to added electron donors. Estuaries Coasts, 2013, 36(5): 1073-1083
|
| [13] |
BraunA, Spona-FriedlM, AvramovM, ElsnerM, BaltarF, ReinthalerT, et al.. Reviews and syntheses: Heterotrophic fixation of inorganic carbon — significant but invisible flux in environmental carbon cycling. Biogeosciences, 2021, 18(12): 3689-3700
|
| [14] |
Cadillo-QuirozH, BräuerS, YashiroE, SunC, YavittJ, ZinderS. Vertical profiles of methanogenesis and methanogens in two contrasting acidic peatlands in central New York State, USA. Environ Microbiol, 2006, 8(8): 1428-1440
|
| [15] |
CamachoA, ErezJ, ChicoteA, FlorínM, SquiresMM, LehmannC, BachofenR. Microbial microstratification, inorganic carbon photoassimilation and dark carbon fixation at the chemocline of the meromictic Lake Cadagno (Switzerland) and its relevance to the food web. Aquat Sci, 2001, 63(1): 91-106
|
| [16] |
Canadell, J.G., Monteiro P.M.S., Costa M.H., Cotrim da Cunha L., Cox P.M., Eliseev A.V., et al. (2021). Global Carbon and other Biogeochemical Cycles and Feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896.007.
|
| [17] |
CasamayorEO, García-CantizanoJ, MasJ, Pedrós-AlióC. Primary production in estuarine oxic/anoxic interfaces: contribution of microbial dark CO2 fixation in the Ebro River Salt Wedge Estuary. Mar Ecol Prog Ser, 2001, 215: 49-56
|
| [18] |
CasamayorEO, García-CantizanoJ, Pedrós-AlióC. Carbon dioxide fixation in the dark by photosynthetic bacteria in sulfide-rich stratified lakes with oxic-anoxic interfaces. Limnol Oceanogr, 2008, 53(4): 1193-1203
|
| [19] |
CasamayorEO, LlirósM, PicazoA, BarberánA, BorregoCM, CamachoA. Contribution of deep dark fixation processes to overall CO2 incorporation and large vertical changes of microbial populations in stratified karstic lakes. Aquat Sci, 2012, 74(1): 61-75
|
| [20] |
CasciottiKL, SigmanDM, HastingsMG, BöhlkeJK, HilkertA. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem, 2002, 74(19): 4905-4912
|
| [21] |
DaimsH, LückerS, WagnerM. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol, 2016, 24(9): 699-712
|
| [22] |
DijkhuizenL, HarderW. Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria. Antonie Van Leeuwenhoek, 1984, 50(5–6): 473-487
|
| [23] |
DongHP, WilliamsE, WangDZ, XieZX, HsiaRC, JenckA, et al.. Responses of Nannochloropsis oceanica IMET1 to long-term nitrogen starvation and recovery. Plant Physiol, 2013, 162(2): 1110-1126
|
| [24] |
EdgarRC, HaasBJ, ClementeJC, QuinceC, KnightR. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011, 27(16): 2194-2200
|
| [25] |
Enrich-PrastA, Machado-SilvaF, BastvikenD, CrillP, SignoriCN Chemosynthesis, 2022 Oxford Elsevier
|
| [26] |
EscuderoL, OetikerN, GallardoK, Tebes-CayoC, GuajardoM, NuñezC, et al.. A thiotrophic microbial community in an acidic brine lake in Northern Chile. Antonie Van Leeuwenhoek, 2018, 111(10): 1967-1968
|
| [27] |
FigueroaIA, BarnumTP, SomasekharPY, CarlströmCI, EngelbrektsonAL, CoatesJD. Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway. Proc Natl Acad Sci USA, 2018, 115(1): E92-E101
|
| [28] |
FixenKR, StarkenburgSR, HovdeBT, JohnsonSL, DeodatoCR, DaligaultHE, et al.. Genome sequences of eight bacterial species found in coculture with the Haptophyte Chrysochromulina tobin. Genome Announc, 2016, 4(6): e01162-e1116
|
| [29] |
FrankenbachS, EzequielJ, PlechaS, GoesslingJW, VazL, KühlM, et al.. Synoptic spatio-temporal variability of the photosynthetic productivity of microphytobenthos and phytoplankton in a tidal estuary. Front Mar Sci, 2020, 7: 170
|
| [30] |
GranumE, MyklestadSM. Effects of NH4+ assimilation on dark carbon fixation and β-1,3-glucan metabolism in the marine diatom Skeletonema costatum (Bacillariophyceae). J Phycol, 1999, 35(6): 1191-1199
|
| [31] |
HouL, XieXB, WanXH, KaoSJ, JiaoNZ, ZhangY. Niche differentiation of ammonia and nitrite oxidizers along a salinity gradient from the Pearl River estuary to the South China Sea. Biogeosciences, 2018, 15(16): 5169-5187
|
| [32] |
HuangJ, YangJ, HanM, WangB, SunX, JiangH. Microbial carbon fixation and its influencing factors in saline lake water. Sci Total Environ, 2023, 877, ArticleID: 162922
|
| [33] |
HuertasIE, ColmanB, EspieGS. Inorganic carbon acquisition and its energization in eustigmatophyte algae. Funct Plant Biol, 2002, 29(2–3): 271-277
|
| [34] |
HüglerM, SievertSM. Beyond the Calvin Cycle: autotrophic carbon fixation in the ocean. Ann Rev Mar Sci, 2011, 3: 261-289
|
| [35] |
HuoYZ, XuSN, WangYY, ZhangJH, ZhangYJ, WuWN, et al.. Bioremediation efficiencies of Gracilaria verrucosa cultivated in an enclosed sea area of Hangzhou Bay. China J Appl Phycol, 2011, 23(2): 173-182
|
| [36] |
IndrebøG, PengerudB, DundasI. Microbial activities in a permanently stratified estuary. II. Microbial activities at the oxic-anoxic interface. Marine Biol, 1979, 51(4): 305-309
|
| [37] |
JeffreySW, HumphreyGF. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz, 1975, 167(2): 191-194
|
| [38] |
KasalickyV, ZengYH, PiwoszK, SimekK, KratochvilováH, KoblízekM. Aerobic anoxygenic photosynthesis is commonly present within the Genus Limnohabitans. Appl Environ Microbiol, 2018, 84(1): e02116-02117
|
| [39] |
KutnerDS, BowmanJS, Saldanha-CorrêaFMP, ChuquiMG, TuraPM, MoreiraDL, et al.. Inorganic carbon assimilation by planktonic community in Santos Basin, Southwestern Atlantic Ocean. Ocean Coastal Res, 2023, 71(3) ArticleID: e23006
|
| [40] |
LetunicI, BorkP. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res, 2016, 44 1): W242-W245
|
| [41] |
LiSY, HarirM, Schmitt-KopplinP, Machado-SilvaF, GonsiorM, BastvikenD, et al.. Distinct non-conservative behavior of dissolved organic matter after mixing Solimoes/Negro and Amazon/Tapajo′s River Waters. Environ Sci Technol, 2023, 3(8): 2083-2095
|
| [42] |
LiuBL, HouLJ, ZhengYL, ZhangZX, TangXF, MaoTQ, et al.. Dark carbon fixation in intertidal sediments: Controlling factors and driving microorganisms. Water Res, 2022, 216, ArticleID: 118381
|
| [43] |
LlirósM, Alonso-SáezL, GichF, PlasenciaA, AuguetO, CasamayorEO, BorregoCM. Active bacteria and archaea cells fixing bicarbonate in the dark along the water column of a stratified eutrophic lagoon. FEMS Microbiol Ecol, 2011, 77(2): 370-384
|
| [44] |
Machado-SilvaF, BastvikenD, MirandaM, PeixotoRB, MarottaH, Enrich-PrastA. Dark carbon fixation in stream carbon cycling. Limnol Oceanogr, 2024, 69: S32-S41
|
| [45] |
MantouraRFC, WoodwardEMS. Optimization of the indophenol blue method for the automated determination of ammonia in estuarine waters. Estuarine Coastal Shelf Sci, 1983, 17(2): 219-224
|
| [46] |
MarkertS, ArndtC, FelbeckH, BecherD, SievertSM, HüglerM, et al.. Physiological proteomics of the uncultured endosymbiont of Riftia pachyptila. Science, 2007, 315(5809): 247-250
|
| [47] |
MerbtSN, StahlDA, CasamayorEO, MartíE, NicolGW, ProsserJI. Differential photoinhibition of bacterial and archaeal ammonia oxidation. FEMS Microbiol Lett, 2012, 327(1): 41-46
|
| [48] |
MiddelburgJJ. Chemoautotrophy in the ocean. Geophys Res Lett, 2011, 38: L24604
|
| [49] |
MolinaV, FaríasL. Aerobic ammonium oxidation in the oxycline and oxygen minimum zone of the eastern tropical South Pacific off northern Chile (∼20°S). Deep Sea Res Part Ii-Topical Stud Oceanography, 2009, 56(16): 1009-1018
|
| [50] |
MorrisseyEM, FranklinRB. Evolutionary history influences the salinity preference of bacterial taxa in wetland soils. Front Microbiol, 2015, 6: 1013
|
| [51] |
Mortain-BertrandA, Descolas-GrosC, JupinH. Pathway of dark inorganic carbon fixation in two species of diatoms: influence of light regime and regulator factors on diel variations. J Plankton Res, 1988, 10(2): 199-217
|
| [52] |
NguyenLT, SchmidtHA, von HaeselerA, MinhBQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol, 2015, 32(1): 268-274
|
| [53] |
Noguerola I, Picazo A, Llirós M, Camacho A, Borrego CM (2015) Diversity of freshwater Epsilonproteobacteria and dark inorganic carbon fixation in the sulphidic redoxcline of a meromictic karstic lake. FEMS Microbiology Ecology, 91(7). https://doi.org/10.1093/femsec/fiv086
|
| [54] |
NoriciA, BazzoniAM, PugnettiA, RavenJA, GiordanoM. Impact of irradiance on the C allocation in the coastal marine diatom Skeletonema marinoi Sarno and Zingone. Plant, Cell Environ, 2011, 34(10): 1666-1677
|
| [55] |
OrenA. Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol, 2011, 13(8): 1908-1923
|
| [56] |
PachiadakiMG, SintesE, BergauerK, BrownJM, RecordNR, SwanBK, et al.. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science, 2017, 358(6366): 1046-1050
|
| [57] |
ParsonsTR, MaitaY, LalliCM A manual of chemical & biological methods for seawater analysis, 1984 Oxford UK Pergamon Press
|
| [58] |
PaulJH, AlfreiderA, WawrikB. Micro- and macrodiversity in rbcL sequences in ambient phytoplankton populations from the southeastern Gulf of Mexico. Mar Ecol Prog Ser, 2000, 198: 9-18
|
| [59] |
PeduzziS, StorelliN, WelshA, PeduzziR, HahnD, PerretX, TonollaM. Candidatus "Thiodictyon syntrophicum", sp nov., a new purple sulfur bacterium isolated from the chemocline of Lake Cadagno forming aggregates and specific associations with Desulfocapsa sp. Syst Appl Microbiol, 2012, 35(3): 139-144
|
| [60] |
PengXF, FuchsmanCA, JayakumarA, OleynikS, Martens-HabbenaW, DevolAH, WardBB. Ammonia and nitrite oxidation in the Eastern Tropical North Pacific. Global Biogeochem Cycles, 2015, 29(12): 2034-2049
|
| [61] |
QiL, ZhengY, HouL, LiuB, ZhouJ, AnZ, et al.. Potential response of dark carbon fixation to global warming in estuarine and coastal waters. Glob Change Biol, 2023, 29(13): 3821-3832
|
| [62] |
ReichT, BelkinN, Sisma-VenturaG, Berman-FrankI, RahavE. Significant dark inorganic carbon fixation in the euphotic zone of an oligotrophic sea. Limnol Oceanogr, 2024, 69(5): 1129-1142
|
| [63] |
ReinthalerT, van AkenHM, HerndlGJ. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior. Deep Sea Res Part Ii-Topical Stud Oceanography, 2010, 57(16): 1572-1580
|
| [64] |
Ruiz-FernándezP, Ramírez-FlandesS, Rodríguez-LeónE, UlloaO. Autotrophic carbon fixation pathways along the redox gradient in oxygen-depleted oceanic waters. Environ Microbiol Rep, 2020, 12(3): 334-341
|
| [65] |
SainiR, KapoorR, KumarR, SiddiqiTO, KumarA. CO2 utilizing microbes — a comprehensive review. Biotechnol Adv, 2011, 29(6): 949-960
|
| [66] |
SaxenaH, SahooD, NazirahmedS, RaiDK, KhanMA, SharmaN, et al.. Contribution of carbon fixation toward carbon sink in the Ocean Twilight Zone. Geophys Res Lett, 2022, 49(18): e2022GL099044
|
| [67] |
SchlossPD, WestcottSL, RyabinT, HallJR, HartmannM, HollisterEB, et al.. Introducing mothur: open-Source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 2009, 75(23): 7537-7541
|
| [68] |
SigmanDM, CasciottiKL, AndreaniM, BarfordC, GalanterM, BöhlkeJK. A bacterial method for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal Chem, 2001, 73(17): 4145-4153
|
| [69] |
SignoriCN, ValentinJL, PolleryRCG, Enrich-PrastA. Temporal variability of dark carbon fixation and bacterial production and their relation with environmental factors in a tropical estuarine system. Estuaries Coasts, 2018, 41(4): 1089-1101
|
| [70] |
Signori CN, Felizardo JPdS, Enrich-Prast A (2020) Bacterial production prevails over photo- and chemosynthesis in a eutrophic tropical lagoon. Estuarine, Coastal Shelf Sci 243. https://doi.org/10.1016/j.ecss.2020.106889
|
| [71] |
Tang KH, Tang YJ, Blankenship RE (2011) Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Front Microbiol 2. https://doi.org/10.3389/fmicb.2011.00165
|
| [72] |
TaylorGT, WayJ, ScrantonMI. Planktonic carbon cycling and transport in surface waters of the highly urbanized Hudson River estuary. Limnol Oceanogr, 2003, 48(5): 1779-1795
|
| [73] |
ThijsS, Op De BeeckM, BeckersB, TruyensS, StevensV, Van HammeJD, et al.. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front Microbiol, 2017, 8: 494
|
| [74] |
TolarBB, KingGM, HollibaughJT. An analysis of Thaumarchaeota populations from the Northern Gulf of Mexico. Front Microbiol, 2013, 4: 72
|
| [75] |
TongYF, LiSQ. One new genus and two new species of oonopid spiders from Xishuangbanna Rainforest, southwestern China (Araneae, Oonopidae). Zookeys, 2015, 494: 1-12
|
| [76] |
UlrichR. Driving dark carbon fixation. Nature Rev Earth Environ, 2022, 3(5): 289-289
|
| [77] |
UNESCO (1966) Determination of photosynthetic pigments in sea-water. France: UNESCO Paris. https://doi.org/10.25607/OBP-1940
|
| [78] |
Vick-MajorsTJ, PriscuJC. Inorganic carbon fixation in ice-covered lakes of the McMurdo Dry Valleys. Antarct Sci, 2019, 31(3): 123-132
|
| [79] |
Wan XS, Sheng HX, Dai MH, Zhang Y, Shi D, Trull TW, et al (2018) Ambient nitrate switches the ammonium consumption pathway in the euphotic ocean. Nat Commun, 9. https://doi.org/10.1038/s41467-018-03363-0
|
| [80] |
WangSY, WangY, FengXJ, ZhaiLM, ZhuGB. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Appl Microbiol Biotechnol, 2011, 90(2): 779-787
|
| [81] |
WangXC, LuoCL, GeTT, XuCL, XueYJ. Controls on the sources and cycling of dissolved inorganic carbon in the Changjiang and Huanghe River estuaries, China: 14C and 13C studies. Limnol Oceanogr, 2016, 61(4): 1358-1374
|
| [82] |
WangMR, SunK, JiaJJ, WuF, GaoY. Climate change drove the decline in Yangtze Estuary Net primary production over the past two decades. Environ Sci Technol, 2024, 58(43): 19305-19314
|
| [83] |
WardBB. Measurement and distribution of nitrification rates in the oceans. Methods Enzymol, 2011, 486: 307-323
|
| [84] |
WawrikB, PaulJH, CampbellL, GriffinD, HouchinL, Fuentes-OrtegaA, Muller-KargerF. Vertical structure of the phytoplankton community associated with a coastal plume in the Gulf of Mexico. Mar Ecol Prog Ser, 2003, 251: 87-101
|
| [85] |
WildmanSG. Along the trail from Fraction I protein to Rubisco (ribulose bisphosphate carboxylase-oxygenase). Photosynth Res, 2002, 73(1–3): 243-250
|
| [86] |
YakimovMM, La ConoV, SmedileF, DeLucaTH, JuárezS, CiordiaS, et al.. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME J, 2011, 5(6): 945-961
|
| [87] |
YeLL, ShiXL, WuXD, KongFX. Nitrate limitation and accumulation of dissolved organic carbon during a spring-summer cyanobacterial bloom in Lake Taihu (China). J Limnol, 2012, 71(1): 67-71
|
| [88] |
YoshizawaY, ToyodaK, AraiH, IshiiM, IgarashiY. CO2-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/oxygenase enzymes and carboxysomes in Hydrogenovibrio marinus strain MH-110. J Bacteriol, 2004, 186(17): 5685-5691
|
| [89] |
YueLY, KongWD, JiMK, LiuJB, Morgan-KissRM. Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes. Sci Total Environ, 2019, 696, ArticleID: 134001
|
| [90] |
ZhangY, QinW, HouL, ZakemEJ, WanXH, ZhaoZH, et al.. Nitrifier adaptation to low energy flux controls inventory of reduced nitrogen in the dark ocean. Proc Natl Acad Sci USA, 2020, 117(9): 4823-4830
|
| [91] |
ZhengYL, JiangXF, HouLJ, LiuM, LinXB, GaoJ, et al.. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient. Biogeosciences, 2016, 121(6): 1632-1645
|
| [92] |
ZhengZZ, WanXH, XuMN, HsiaoSSY, ZhangY, ZhengLW, et al.. Effects of temperature and particles on nitrification in a eutrophic coastal bay in southern China. Biogeosciences, 2017, 122(9): 2325-2337
|
| [93] |
Zheng YL, Hou LJ, Zhang ZX, Ge JZ, Li MT, Yin GY, et al (2021) Overlooked contribution of water column to nitrogen removal in estuarine turbidity maximum zone (TMZ). Sci Total Environ 788. https://doi.org/10.1016/j.scitotenv.2021.147736
|
| [94] |
ZhongZP, LiuY, MiaoLL, WangF, ChuLM, WangJL, LiuZP. Prokaryotic community structure driven by salinity and Ionic concentrations in plateau lakes of the Tibetan Plateau. Appl Environ Microbiol, 2016, 82(6): 1846-1858
|
| [95] |
ZhouW, LiaoJ, GuoY, YuanX, HuangH, YuanT, LiuS. High dark carbon fixation in the tropical South China Sea. Cont Shelf Res, 2017, 146: 82-88
|
Funding
National Natural Science Foundation of China(42030411 and 41971125)
Guangdong Provincial Key Laboratory for Translational Cancer Research of Chinese Medicine, Guangzhou University of Chinese Medicine(2023YFC3709005)
National Science Foundation for Distinguished Young Scholars(41725002)
RIGHTS & PERMISSIONS
The Author(s)