Dietary macroalgae enhances amino acid metabolism via intestinal Shewanella in grass carp (Ctenopharyngodon idella)

Xingxing An , Shuhui Niu , Mamun Abdullah Al , Erxin Su , Lin Chen , Houxiong He , Yaohua Wang , Song Zhang , Yong Yang , Shen Wang , Zheyu Wen , Baohong Xu , Yuzhen Ming , Wengen Zhu , Zhenrui Zhao , Kun Wu , Yufeng Yang , Wei Xie , Zhili He , Qingyun Yan

Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (4) : 36

PDF
Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (4) :36 DOI: 10.1007/s44307-025-00090-8
Article
research-article

Dietary macroalgae enhances amino acid metabolism via intestinal Shewanella in grass carp (Ctenopharyngodon idella)

Author information +
History +
PDF

Abstract

The gut microbiome plays pivotal roles in the host’s metabolic response to dietary interventions. Dietary macroalgae supplementation represents a promising strategy for enhancing animal growth and health via microbiome modulation. However, the underlying mechanism of how macroalgae supplementation regulates microbiome-host interactions in aquatic species remains unclear. This study investigated the effects of three dietary macroalgae—Sargassum hemiphyllum (S), Asparagopsis taxiformis (A), and Gracilaria lemaneiformis (G)—each supplemented at 5% in feed, on the gut microbiome and metabolism of grass carp (Ctenopharyngodon idella), using integrated approaches of 16S rRNA sequencing, metagenomics, and metabolomics. While all three macroalgae influenced host growth, supplementation of S provided the most comprehensive benefits, with significant enhancement of body weight and hepatic superoxide dismutase activity. Integrated multi-omics analysis revealed that dietary macroalgae supplementation increased the relative abundance of the key gut bacterial genus Shewanella, with the most notable effect observed in the supplementation of S. Subsequent analysis of a metagenome-assembled genome (MAG) of Shewanella (MAG C3_bin52) demonstrated its considerable potential for amino acid biosynthesis and metabolism. This genomic potential was further supported by metabolomic profiling, which indicated significant upregulation of amino acid-related metabolites, particularly in the supplementation S. Pathway analysis confirmed enrichment in processes associated with protein digestion and absorption, amino acid biosynthesis, and related metabolic pathways. These findings highlight the modulation of a macroalgae-microbiome-metabolite axis in grass carp, primarily mediated by the enrichment of Shewanella in gut ecosystem for enhancing host amino acid metabolism. This study advances understanding of dietary modulation of the gut microbiome and provides insights for the sustainable development of aquaculture.

Keywords

Amino acid metabolism / Grass carp (Ctenopharyngodon idella) / Gut microbiome / Macroalgae / Shewanella

Cite this article

Download citation ▾
Xingxing An, Shuhui Niu, Mamun Abdullah Al, Erxin Su, Lin Chen, Houxiong He, Yaohua Wang, Song Zhang, Yong Yang, Shen Wang, Zheyu Wen, Baohong Xu, Yuzhen Ming, Wengen Zhu, Zhenrui Zhao, Kun Wu, Yufeng Yang, Wei Xie, Zhili He, Qingyun Yan. Dietary macroalgae enhances amino acid metabolism via intestinal Shewanella in grass carp (Ctenopharyngodon idella). Advanced Biotechnology, 2025, 3(4): 36 DOI:10.1007/s44307-025-00090-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe, 2018, 23: 716-724.

[2]

Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, Ogata H. Kofamkoala: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics, 2020, 36: 2251-2252.

[3]

Bakky MAH, Tran NT, Zhang M, Zhang Y, Liang H, Wang Y, Zhang Y, Ma H, Zheng H, Li S. In vitro fermentation of Gracilaria lemaneiformis and its sulfated polysaccharides by rabbitfish gut microbes. Int J Biol Macromol, 2023, 246: 125561.

[4]

Barker M, Rayens W. Partial least squares for discrimination. J Chemom, 2003, 17: 166-173.

[5]

Bogatyrev SR, Rolando JC, Ismagilov RF. Self-reinoculation with fecal flora changes microbiota density and composition leading to an altered bile-acid profile in the mouse small intestine. Microbiome, 2020, 8(1): 19.

[6]

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. . Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol, 2019, 37: 852-857.

[7]

Breiman L. Random forests. Mach Learn, 2001, 45(1): 5-32.

[8]

Brown J, Pirrung M, McCue LA. FQC dashboard: integrates FastQC results into a web-based, interactive, and extensible FASTQ quality control tool. Bioinformatics, 2017, 33: 3137-3139.

[9]

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods, 2015, 12: 59-60.

[10]

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods, 2016, 13: 581-583.

[11]

Cámara-Ruiz M, Balebona MC, Moriñigo , Esteban . Probiotic Shewanella putrefaciens (SpPdp11) as a fish health modulator: A review. Microorganisms, 2020, 8: 1990.

[12]

Chaudhary A, Ketkar OA, Irfan S, Rana V, Rahi P, Deshmukh R, Kaur J, Dhar H. Genomic insights into omega-3 polyunsaturated fatty acid producing Shewanella sp. N2AIL from fish gut. Biology, 2022, 11: 632.

[13]

Choi H, Rao MC, Chang EB. Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism. Nat Rev Gastroenterol Hepatol, 2021, 18: 679-689.

[14]

Cordero H, Guardiola FA, Tapia-Paniagua ST, Cuesta A, Meseguer J, Balebona MC, Moriñigo MA, Esteban MA. Modulation of immunity and gut microbiota after dietary administration of alginate encapsulated Shewanella putrefaciens Pdp11 to gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol, 2015, 45: 608-618.

[15]

Cox TO, Lundgren P, Nath K, Thaiss CA. Metabolic control by the microbiome. Genome Med, 2022, 14: 80.

[16]

David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, et al. . Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505: 559-563.

[17]

Deutsch EW, Mendoza L, Shteynberg D, Slagel J, Sun Z, Moritz RL. Trans-proteomic pipeline, a standardized data processing pipeline for large-scale reproducible proteomics informatics. Proteomics Clin Appl, 2015, 9: 745-754.

[18]

Díaz-Rosales P, Salinas I, Rodríguez A, Cuesta A, Chabrillón M, Balebona MC, Moriñigo MA, Esteban MA, Meseguer J. Gilthead seabream (Sparus aurata L.) innate immune response after dietary administration of heat-inactivated potential probiotics. Fish Shellfish Immunol, 2006, 20: 482-492.

[19]

Díaz-Rosales P, Arijo S, Chabrillón M, Alarcón FJ, Tapia-Paniagua ST, Martínez-Manzanares E, Balebona MC, Moriñigo MA. Effects of two closely related probiotics on respiratory burst activity of Senegalese sole (Solea senegalensis, Kaup) phagocytes, and protection against Photobacterium damselae subsp. piscicida. Aquaculture, 2009, 293: 16-21.

[20]

Food and Agriculture Organization of the United Nations (FAO). (2024). The State of Food and Agriculture 2024. Rome, Italy: FAO.

[21]

Genovese G, Faggio C, Gugliandolo C, Torre A, Spanò A, Morabito M, Maugeri TL. In vitro evaluation of antibacterial activity of Asparagopsis taxiformis from the Straits of Messina against pathogens relevant in aquaculture. Mar Environ Res, 2012, 73: 1-6.

[22]

Han C, Shi C, Liu L, Han J, Yang Q, Wang Y, Li X, Fu W, Gao H, Huang H, et al. . Majorbio cloud 2024: update single-cell and multiomics workflows. iMeta, 2024, 3: e217.

[23]

Harsha Mohan E, Madhusudan S, Baskaran R. The sea lettuce Ulva sensu lato: Future food with health-promoting bioactives. Algal Res, 2023, 71: 103069.

[24]

Hong PY, Wheeler E, Cann IKO, Mackie RI. Phylogenetic analysis of the fecal microbial community in herbivorous land and marine iguanas of the Galápagos Islands using 16S rRNA-based pyrosequencing. ISME J, 2011, 5: 1461-1470.

[25]

Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics, 2010, 26: 680-682.

[26]

Huang D, Gu J, Liang H, Ren M, Xue C. Effects of seaweed polysaccharide on the growth and physiological health of largemouth bass (Micropterus salmoides). Antioxidants, 2025, 14: 52.

[27]

Hwang PA, Chien SY, Chan YL, Lu MK, Wu CH, Kong ZL, Wu CJ. Inhibition of lipopolysaccharide (LPS)-induced inflammatory responses by Sargassum hemiphyllum sulfated polysaccharide extract in RAW 264.7 macrophage cells. J Agric Food Chem, 2011, 59: 2062-2068.

[28]

Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 2010, 11: 119.

[29]

Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ, 2015, 3e1165

[30]

Lemaire ON, Méjean V, Iobbi-Nivol C. The Shewanella genus: ubiquitous organisms sustaining and preserving aquatic ecosystems. FEMS Microbiol Rev, 2020, 44: 155-170.

[31]

Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 2015, 31: 1674-1676.

[32]

Li R, Zhou QL, Chen ST, Tai MR, Cai HY, Ding R, Liu XF, Chen JP, Luo LX, Zhong SY. Chemical characterization and immunomodulatory activity of fucoidan from Sargassum hemiphyllum. Mar Drugs, 2022, 21: 18.

[33]

Li M, Liang H, Yang H, Ding Q, Xia R, Chen J, Zhou W, Yang Y, Zhang Z, Yao Y, et al. . Deciphering the gut microbiome of grass carp through multi-omics approach. Microbiome, 2024, 12: 2.

[34]

Liu YN, Liu Z, Liu J, Hu Y, Cao B. Unlocking the potential of Shewanella in metabolic engineering: current status, challenges, and opportunities. Metab Eng, 2025, 89: 1-11.

[35]

Lu SY, Liu Y, Tang S, Zhang W, Yu Q, Shi C, Cheong KL. Gracilaria lemaneiformis polysaccharides alleviate colitis by modulating the gut microbiota and intestinal barrier in mice. Food Chem X, 2021, 13: 100197.

[36]

Lundgren P, Thaiss CA. The microbiome-adipose tissue axis in systemic metabolism. Am J Physiol Gastrointest Liver Physiol, 2020, 318: G717-G724.

[37]

Ma N, Ma X. Dietary amino acids and the gut-microbiome-immune axis: physiological metabolism and therapeutic prospects. Compr Rev Food Sci Food Saf, 2019, 18(1): 221-242.

[38]

Marino F, Di Caro G, Gugliandolo C, Spanò A, Faggio C, Genovese G, Morabito M, Russo A, Barreca D, Fazio F, et al. . Preliminary study on the in vitro and in vivo effects of Asparagopsis taxiformis bioactive phycoderivates on teleosts. Front Physiol, 2016, 7: 459.

[39]

Moi IM, Leow ATC, Ali MSM, Rahman RNZRA, Salleh AB, Sabri S. Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production. Appl Microbiol Biotechnol, 2018, 102: 5811-5826.

[40]

Montoya-Ciriaco N, Gómez-Acata S, Muñoz-Arenas LC, Dendooven L, Estrada-Torres A, Díaz de la Vega-Pérez AH, Navarro-Noya YE. Dietary effects on gut microbiota of the mesquite lizard Sceloporus grammicus (Wiegmann, 1828) across different altitudes. Microbiome, 2020, 8: 6.

[41]

Murga-Garrido SM, Hong Q, Cross TL, Hutchison ER, Han J, Thomas SP, Vivas EI, Denu J, Ceschin DG, Tang ZZ, et al. . Gut microbiome variation modulates the effects of dietary fiber on host metabolism. Microbiome, 2021, 9: 117.

[42]

Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res, 2015, 25: 1043-1055.

[43]

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods, 2017, 14: 417-419.

[44]

Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G. Seaweeds as a functional ingredient for a healthy diet. Mar Drugs, 2020, 18: 301.

[45]

Pereira A, Marmelo I, Dias M, Silva AC, Grade AC, Barata M, Pousão-Ferreira P, Dias J, Anacleto P, Marques A, et al. . Asparagopsis taxiformis as a novel antioxidant ingredient for climate-smart aquaculture: antioxidant, metabolic and digestive modulation in juvenile white seabream (Diplodus sargus) exposed to a marine heatwave. Antioxidants, 2024, 13: 949.

[46]

Pérez-Pascual D, Pérez-Cobas AE, Rigaudeau D, Rochat T, Bernardet JF, Skiba-Cassy S, Marchand Y, Duchaud E, Ghigo JM. Sustainable plant-based diets promote rainbow trout gut microbiota richness and do not alter resistance to bacterial infection. Anim Microbiome, 2021, 3: 47.

[47]

Piazzon MC, Calduch-Giner JA, Fouz B, Estensoro I, Simó-Mirabet P, Puyalto M, Karalazos V, Palenzuela O, Sitjà-Bobadilla A, Pérez-Sánchez J. Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets. Microbiome, 2017, 5: 164.

[48]

Pickard JM, Porwollik S, Caballero-Flores G, Caruso R, Fukuda S, Soga T, Inohara N, McClelland M, Núñez G. Dietary amino acids regulate Salmonella colonization via microbiota-dependent mechanisms in the mouse gut. Nat Commun, 2025, 16: 4225.

[49]

Pinchuk GE, Geydebrekht OV, Hill EA, Reed JL, Konopka AE, Beliaev AS, Fredrickson JK. Pyruvate and lactate metabolism by Shewanella oneidensis MR-1 under fermentation, oxygen limitation, and fumarate respiration conditions. Appl Environ Microbiol, 2011, 77: 8234-8240.

[50]

Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun, 2018, 9: 3294.

[51]

Schoeler M, Ellero-Simatos S, Birkner T, Mayneris-Perxachs J, Olsson L, Brolin H, Loeber U, Kraft JD, Polizzi A, Martí-Navas M, et al. . The interplay between dietary fatty acids and gut microbiota influences host metabolism and hepatic steatosis. Nat Commun, 2023, 14: 5329.

[52]

Shin J, Ko D, Hasanthi M, Eom G, Lee K. Dietary valine requirement of juvenile olive flounder (Paralichthys olivaceus). Aquacult Nutr, 2024, 2024: 3643845.

[53]

Siddik MAB, Francis P, Rohani MF, Azam MS, Mock TS, Francis DS. Seaweed and seaweed-based functional metabolites as potential modulators of growth, immune and antioxidant responses, and gut microbiota in fish. Antioxidants, 2023

[54]

Tanna B, Mishra A. Metabolites unravel nutraceutical potential of edible seaweeds: an emerging source of functional food. Compr Rev Food Sci Food Saf, 2018, 17: 1613-1624.

[55]

Varela JL, Ruiz-Jarabo I, Vargas-Chacoff L, Arijo S, León-Rubio JM, García-Millán I, Martín del Río MP, Moriñigo MA, Mancera JM. Dietary administration of probiotic Pdp11 promotes growth and improves stress tolerance to high stocking density in gilthead seabream Sparus auratus. Aquaculture, 2010, 309: 265-271.

[56]

Wang Z, Ge S, Li S, Lin H, Lin S. Anti-obesity effect of trans-cinnamic acid on HepG2 cells and HFD-fed mice. Food Chem Toxicol, 2020, 137: 111148.

[57]

Wang D, Wang J, Zeng R, Wu J, Michael SV, Qu W. The degradation activities for three seaweed polysaccharides of Shewanella sp. WPAGA9 isolated from deep-sea sediments. J Basic Microbiol, 2021, 61: 406-418.

[58]

Wood DE, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2. Genome Biol, 2019, 20: 257.

[59]

Wu Z, Zhang Q, Yang J, Zhang J, Fu J, Dang C, Liu M, Wang S, Lin Y, Hao J, et al. . Significant alterations of intestinal symbiotic microbiota induced by intraperitoneal vaccination mediate changes in intestinal metabolism of NEW genetically improved farmed tilapia (NEW GIFT, Oreochromis niloticus). Microbiome, 2022, 10(1): 221.

[60]

Wu S, Pan M, Zan Z, Jakovlić I, Zhao W, Zou H, Ringø E, Wang G. Regulation of lipid metabolism by gut microbiota in aquatic animals. Rev Aquac, 2024, 16: 34-46.

[61]

Yagi H, Fujise A, Itabashi N, Ohshiro T. Characterization of a novel endo-type alginate lyase derived from Shewanella sp. YH1. J Biochem, 2018, 163: 341-350.

[62]

Yang H, Rahman MM, Li X, Sharifuzzaman SM, Leng X. Dietary leucine requirement of juvenile largemouth bass (Micropterus salmoides) based on growth, nutrient utilization and growth-related gene analyses. Aquaculture, 2022, 555: 738207.

[63]

Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res, 2014, 42: D643-D648.

[64]

Yilmaz S, Sova M, Ergün S. Antimicrobial activity of trans-cinnamic acid and commonly used antibiotics against important fish pathogens and nonpathogenic isolates. J Appl Microbiol, 2018, 125: 1714-1727.

[65]

Yılmaz S, Ergün S. Trans-cinnamic acid application for rainbow trout (Oncorhynchus mykiss): i. Effects on haematological, serum biochemical, non-specific immune and head kidney gene expression responses. Fish Shellfish Immunol, 2018, 78: 140-157.

[66]

Yu H, Ren M, Huang D, Zhang L, Chen X, Wang Y, Liang H. Dietary threonine influences antioxidant capacity and immune status in juvenile largemouth bass (Micropterus salmoides). Aquac Rep, 2024, 37: 102197.

[67]

Zeng SL, Li SZ, Xiao PT, Cai YY, Chu C, Chen BZ, Li P, Li J, Liu EH. Citrus polymethoxyflavones attenuate metabolic syndrome by regulating gut microbiome and amino acid metabolism. Sci Adv, 2020, 6(1): eaax6208.

[68]

Zhou Z, Tran PQ, Breister AM, Liu Y, Kieft K, Cowley ES, Karaoz U, Anantharaman K. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome, 2022, 10: 33.

[69]

Zhuang Y, Gao D, Jiang W, Xu Y, Liu G, Hou G, Chen T, Li S, Zhang S, Liu S, et al. . Core microbe Bifidobacterium in the hindgut of calves improves the growth phenotype of young hosts by regulating microbial functions and host metabolism. Microbiome, 2025, 13(1): 13.

Funding

Zhuhai Industry-University-Research Cooperation Project(2320004002504)

Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai)(SML2021SP203)

RIGHTS & PERMISSIONS

The Author(s)

PDF

45

Accesses

0

Citation

Detail

Sections
Recommended

/