Pre-mRNA splicing and its regulation in microalgae and cyanobacteria

Sally Do , Yue Liu , Henry Huynh , Yinggao Liu , Wujiao Li , Mo-Xian Chen , Zhi-Yan Du

Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (4) : 35

PDF
Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (4) :35 DOI: 10.1007/s44307-025-00087-3
Review
review-article

Pre-mRNA splicing and its regulation in microalgae and cyanobacteria

Author information +
History +
PDF

Abstract

Among eukaryotes, alternative splicing (AS) plays a role in mechanisms involved in processes such as regulation, development, and stress response. In animals, AS mainly functions in tissue development, whereas in plant species, AS plays a major role in stress response, a function additionally mirrored in microalgae. The latter species are highly valued for their ability to produce a variety of useful compounds. Furthermore, their productivity is directly intertwined with stress response, placing the mechanisms behind it in the spotlight. As stress can spur an increased production of pigments, lipids, fatty acids, and carbohydrates utilized in the synthesis of products such as nutraceuticals, pharmaceuticals, and biofuels. Delving into microalgae, we assess AS processes and the regulation of various developmental stages and stress conditions. Additionally, cyanobacteria also have high economic value. As prokaryotes with the ability to undergo self-splicing, research focus has promoted the phylum’s use in biotechnology to catalyze protein splicing. Although self-splicing and AS are two different types of splicing processes, there are some connections between them. For instance, the small nuclear RNA required for AS originates from group II introns. Therefore, this review focuses on elaborating on two distinct but related topics: the AS of microalgae and the three main forms of self-splicing intervening sequences (group I introns, group II introns, and inteins) in cyanobacteria.

Keywords

Alternative splicing / Bioreactor / Post-transcriptional regulation / Eukaryotes / Splicing machinery / Photosynthesis

Cite this article

Download citation ▾
Sally Do, Yue Liu, Henry Huynh, Yinggao Liu, Wujiao Li, Mo-Xian Chen, Zhi-Yan Du. Pre-mRNA splicing and its regulation in microalgae and cyanobacteria. Advanced Biotechnology, 2025, 3(4): 35 DOI:10.1007/s44307-025-00087-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aghamirzaie D, Nabiyouni M, Fang Y, Klumas C, Heath LS, Grene R, Collakova E. Changes in RNA Splicing in Developing Soybean (Glycine max) Embryos. Biology, 2013, 2(4): 1311-1337.

[2]

Ahmed F, Fanning K, Netzel M, Turner W, Li Y, Schenk PM. Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem, 2014, 165: 300-306.

[3]

Ajjawi I, Verruto J, Aqui M, Soriaga LB, Coppersmith J, Kwok K, Peach L, Orchard E, Kalb R, Xu W, Carlson TJ, Francis K, Konigsfeld K, Bartalis J, Schultz A, Lambert W, Schwartz AS, Brown R, Moellering ER. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat Biotechnol, 2017, 35(7): 647-652.

[4]

Avci S, Haznedaroglu BZ. Pretreatment of algal and cyanobacterial biomass for high quality phycocyanin extraction. J Appl Phycol, 2022, 34(4): 2015-2026.

[5]

Baier T, Wichmann J, Kruse O, Lauersen KJ. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res, 2018, 46(13): 6909-6919.

[6]

Baier T, Jacobebbinghaus N, Einhaus A, Lauersen KJ, Kruse O. Introns mediate post-transcriptional enhancement of nuclear gene expression in the green microalga Chlamydomonas reinhardtii. PLoS Genet, 2020, 16(7): e1008944

[7]

Bao H, Li E, Mansfield SD, Cronk QCB, El-Kassaby YA, Douglas CJ. The developing xylem transcriptome and genome-wide analysis of alternative splicing in Populus trichocarpa (black cottonwood) populations. BMC Genomics, 2013, 14: 359

[8]

Ben-Amotz A, Avron M. The Role of Glycerol in the Osmotic Regulation of the Halophilic Alga Dunaliella parva. Plant Physiol, 1973, 51(5): 875-878.

[9]

Breitbart RE, Andreadis A, Nadal-Ginard B. Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu Rev Biochem, 1987, 56: 467-495.

[10]

Burke JM, Belfort M, Cech TR, Davies RW, Schweyen RJ, Shub DA, Szostak JW, Tabak HF. Structural conventions for group I introns. Nucleic Acids Res, 1987, 15(18): 7217-7221.

[11]

Calixto CPG, Guo W, James AB, Tzioutziou NA, Entizne JC, Panter PE, Knight H, Nimmo HG, Zhang R, Brown JWS. Rapid and Dynamic Alternative Splicing Impacts the Arabidopsis Cold Response Transcriptome. Plant Cell, 2018, 30(7): 1424-1444.

[12]

Cao Y, Jin N, Xu H, Liu Y, Zhu WH, Li XR, Qiao DR, Cao Y. Characterization and Alternative Splicing of the Complex I 19-kD Subunit in Dunaliella salina : Expression and Mutual Correlation of Splice Variants under Diverse Stresses. Biosci Biotechnol Biochem, 2010, 74(5): 1073-1078.

[13]

Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet, 2002, 3: 285-298.

[14]

Caspi J, Amitai G, Belenkiy O, Pietrokovski S. Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol, 2003, 50(5): 1569-1577.

[15]

Cech TR. Self-splicing of group I introns. Annu Rev Biochem, 1990, 59: 543-568.

[16]

Chamala S, Feng G, Chavarro C, Barbazuk WB. Genome-wide identification of evolutionarily conserved alternative splicing events in flowering plants. Front Bioeng Biotechnol, 2015, 3: 33.

[17]

Chen Q, Han Y, Liu H, Wang X, Sun J, Zhao B, Li W, Tian J, Liang Y, Yan J, Yang X, Tian F. Genome-Wide Association Analyses Reveal the Importance of Alternative Splicing in Diversifying Gene Function and Regulating Phenotypic Variation in Maize. Plant Cell, 2018, 30(7): 1404-1423.

[18]

Chen T, Liu Y, Song S, Bai J, Li C. Full-length transcriptome analysis of the bloom-forming dinoflagellate Akashiwo sanguinea by single-molecule real-time sequencing. Front Microbiol, 2022, 13: 993914.

[19]

Chen M-X, Tian Y, Zhu F-Y, Fan T, Yan H-X, Sun P-C, Li M, Hou X-X, Lin P, Song Y-C, Yang X, Lu C-M, Yang J-C, Reddy ASN, Zhang J-H, Liu Y-G. Alternative splicing of VRF1 acts as a molecular switch to regulate stress-induced early flowering. Cell Rep, 2024, 43(11): 114918

[20]

Chong S, Shao Y, Paulus H, Benner J, Perler FB, Xu M-Q. Protein Splicing Involving the Saccharomyces cerevisiae VMA Intein: The Steps in the Splicing Pathway, Side Reactions Leading to Protein Cleavage, and Establishment of an in vitro Splicing System. J Biol Chem, 1996, 271(36): 22159-22168.

[21]

Cormier A, Avia K, Sterck L, Derrien T, Wucher V, Andres G, Monsoor M, Godfroy O, Lipinska A, Perrineau MM, Van De Peer Y, Hitte C, Corre E, Coelho SM, Cock JM. Re-annotation, improved large-scale assembly and establishment of a catalogue of noncoding loci for the genome of the model brown alga Ectocarpus. New Phytol, 2017, 214(1): 219-232.

[22]

Croft MT, Moulin M, Webb ME, Smith AG. Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci U S A, 2007, 104(52): 20770-20775.

[23]

Cui Y, Cai M, Stanley HE. Comparative Analysis and Classification of Cassette Exons and Constitutive Exons. Biomed Res Int, 2017, 2017(1): 7323508

[24]

Culaba AB, Ubando AT, Ching PML, Chen W-H, Chang J-S. Biofuel from Microalgae: Sustainable Pathways. Sustainability, 2020, 12(19): 8009.

[25]

Dassa B, Amitai G, Caspi J, Schueler-Furman O, Pietrokovski S. Trans Protein Splicing of Cyanobacterial Split Inteins in Endogenous and Exogenous Combinations. Biochemistry, 2007, 46(1): 322-330.

[26]

Do S, Du Z-Y. Exploring the Impact of Environmental Conditions and Bioreactors on Microalgae Growth and Applications. Energies, 2024, 17(20): 5218

[27]

Dong C, He F, Berkowitz O, Liu J, Cao P, Tang M, Shi H, Wang W, Li Q, Shen Z, Whelan J, Zheng L. Alternative Splicing Plays a Critical Role in Maintaining Mineral Nutrient Homeostasis in Rice (Oryza sativa). Plant Cell, 2018, 30(10): 2267-2285.

[28]

Eryilmaz E, Shah NH, Muir TW, Cowburn D. Structural and Dynamical Features of Inteins and Implications on Protein Splicing. J Biol Chem, 2014, 289(21): 14506-14511.

[29]

Ferat J-L, Michel F. Group II self-splicing introns in bacteria. Nature, 1993, 364: 358-361.

[30]

Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res, 2010, 20: 45-58.

[31]

Galante PAF, Sakabe NJ, Kirschbaum-Slager N, De Souza SJ. Detection and evaluation of intron retention events in the human transcriptome. RNA, 2004, 10: 757-765.

[32]

Gleason FK, Olszewski NE. Isolation of the Gene for the B12-Dependent Ribonucleotide Reductase from Anabaena sp. Strain PCC 7120 and Expression in Escherichia coli. J Bacteriol, 2002, 184(23): 6544-6550.

[33]

Grau-Bové X, Ruiz-Trillo I, Irimia M. Origin of exon skipping-rich transcriptomes in animals driven by evolution of gene architecture. Genome Biol, 2018, 19: 135

[34]

Green CM, Novikova O, Belfort M. The dynamic intein landscape of eukaryotes. Mob DNA, 2018, 9: 4

[35]

Grützmann K, Szafranski K, Pohl M, Voigt K, Petzold A, Schuster S. Fungal Alternative Splicing is Associated with Multicellular Complexity and Virulence: A Genome-Wide Multi-Species Study. DNA Res, 2014, 21(1): 27-39.

[36]

Guo W, Yu K, Han L, Li X, Wang H, Liu Y, Zhang Y. Global profiling of alternative splicing landscape responsive to salt stress in wheat (Triticum aestivum L.). Plant Growth Regul, 2020, 92: 107-116.

[37]

Guo X, Wang T, Jiang L, Qi H, Zhang Z. PlaASDB: a comprehensive database of plant alternative splicing events in response to stress. BMC Plant Biol, 2023, 23(1): 225

[38]

Gupta V, Estrada AD, Blakley I, Reid R, Patel K, Meyer MD, Andersen SU, Brown AF, Lila MA, Loraine AE. RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing. GigaScience, 2015, 4(1): s13742-015-0046-9.

[39]

Haack DB, Yan X, Zhang C, Hingey J, Lyumkis D, Baker TS, Toor N. Cryo-EM Structures of a Group II Intron Reverse Splicing into DNA. Cell, 2019, 178(3): 612-623.

[40]

Haugen P, Simon DM, Bhattacharya D. The natural history of group I introns. Trends in Genetics, 2005, 21(2): 111-119.

[41]

Haugen P, Bhattacharya D, Palmer JD, Turner S, Lewis LA, Pryer KM. Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. BMC Evol Biol, 2007, 7: 159

[42]

Hausner G, Hafez M, Edgell DR. Bacterial group I introns: mobile RNA catalysts. Mob DNA, 2014, 5: 8

[43]

He Q, Lin Y, Tan H, Zhou Y, Wen Y, Gan J, Li R, Zhang Q. Transcriptomic profiles of Dunaliella salina in response to hypersaline stress. BMC Genomics, 2020, 21: 115

[44]

Huertas R, Catalá R, Jiménez-Gómez JM, Mar Castellano M, Crevillén P, Piñeiro M, Jarillo JA, Salinas J. Arabidopsis SME1 Regulates Plant Development and Response to Abiotic Stress by Determining Spliceosome Activity Specificity. Plant Cell, 2019, 31(2): 537-554.

[45]

Jacobs A, Elmer KR. Alternative splicing and gene expression play contrasting roles in the parallel phenotypic evolution of a salmonid fish. Mol Ecol, 2021, 30(20): 4955-4969.

[46]

Jacquier A, Michel F. Multiple exon-binding sites in class II self-splicing introns. Cell, 1987, 50(1): 17-29.

[47]

Jiang H, Zhang M, Yu F, Li X, Jin J, Zhou Y, Wang Q, Jing T, Wan X, Schwab W, Song C. A geraniol synthase regulates plant defense via alternative splicing in tea plants. Hortic Res, 2023, 10(10): uhad184

[48]

Kakaradov B, Xiong HY, Lee LJ, Jojic N, Frey BJ. Challenges in estimating percent inclusion of alternatively spliced junctions from RNA-seq data. BMC Bioinformatics, 2012, 13: S11

[49]

Karkala S, D’Souza L, Nivas Sk. Bioprospecting microalgae harnessed from the coastal belt of Mangalore, India as prospective nutraceutical and biofuel candidates. Appl Phycol, 2021, 2(1): 60-73.

[50]

Karpova OV, Vinogradova EN, Moisenovich AM, Pustovit OB, Ramonova AA, Abramochkin DV, Lobakova ES. Functional Analysis of the Channelrhodopsin Genes from the Green Algae of the White Sea Basin. Biochemistry (Moscow), 2024, 89(8): 1392-1401.

[51]

Khemiri S, Bouchech I, Berrejeb N, Mejri M, Smaali I, Khelifi N. Effects of Growth Medium Variation on the Nutri-Functional Properties of Microalgae Used for the Enrichment of Ricotta. Food Technol Biotechnol, 2022, 60(1): 29-40.

[52]

Kim E, Magen A, Ast G. Different levels of alternative splicing among eukaryotes. Nucleic Acids Res, 2007, 35(1): 125-131.

[53]

Koren E, Lev-Maor G, Ast G. The Emergence of Alternative 3′ and 5′ Splice Site Exons from Constitutive Exons. PLoS Comput Biol, 2007, 3(5): e95

[54]

Križanović K, Echchiki A, Roux J, Šikić M. Evaluation of tools for long read RNA-seq splice-aware alignment. Bioinformatics, 2018, 34(5): 748-754.

[55]

Labadorf A, Link A, Rogers MF, Thomas J, Reddy ASN, Ben-Hur A. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii. BMC Genomics, 2010, 11: 114

[56]

Lam SD, Babu MM, Lees J, Orengo CA. Biological impact of mutually exclusive exon switching. PLoS Comput Biol, 2021, 17(3): e1008708

[57]

LaRoche-Johnston F, Monat C, Coulombe S, Cousineau B. Bacterial group II introns generate genetic diversity by circularization and trans-splicing from a population of intron-invaded mRNAs. PLoS Genet, 2018, 14(11): e1007792

[58]

Lehmann K, Schmidt U. Group II Introns: Structure and Catalytic Versatility of Large Natural Ribozymes. Crit Rev Biochem Mol Biol, 2003, 38(3): 249-303.

[59]

Li S, Liu J, Liu Z, Li X, Wu F, He Y. Heat-Induced TAS1 TARGET1 Mediates Thermotolerance via Heat Stress Transcription Factor A1a–Directed Pathways in Arabidopsis. Plant Cell, 2014, 26(4): 1764-1780.

[60]

Li W, Flores DC, Füßel J, Euteneuer J, Dathe H, Zou Y, Weisheit W, Wagner V, Petersen J, Mittag M. A Musashi Splice Variant and Its Interaction Partners Influence Temperature Acclimation in Chlamydomonas. Plant Physiol, 2018, 178(4): 1489-1506.

[61]

Li Q, Zhang L, Liu J. Comparative transcriptome analysis at seven time points during Haematococcus pluvialis motile cell growth and astaxanthin accumulation. Aquaculture, 2019, 503: 304-311.

[62]

Li W, Zeng W, Jin X, Xu H, Fang X, Ma Z, Cao G, Li R, Ma L. High-Altitude Stress Orchestrates mRNA Expression and Alternative Splicing of Ovarian Follicle Development Genes in Tibetan Sheep. Animals, 2022, 12(20): 2812.

[63]

Li Y, Wu Q, Zhu L, Zhang R, Tong B, Wang Y, Han Y, Lu Y, Dou D, Tian Z, Zheng J, Zhang Y. Heat-shock transcription factor HsfA8a regulates heat stress response in Sorbus pohuashanensis. Planta, 2024, 260(3): 61

[64]

Lin K-T, Krainer AR. PSI-Sigma: a comprehensive splicing-detection method for short-read and long-read RNA-seq analysis. Bioinformatics, 2019, 35(23): 5048-5054.

[65]

Lin H, Zhang Z, Iomini C, Dutcher SK. Identifying RNA splicing factors using IFT genes in Chlamydomonas reinhardtii. Open Biol, 2018, 8(3): 170211

[66]

Liu Z, Frutos S, Bick MJ, Vila-Perelló M, Debelouchina GT, Darst SA, Muir TW. Structure of the branched intermediate in protein splicing. Proc Natl Acad Sci U S A, 2014, 111(23): 8422-8427.

[67]

Liu Y, Do S, Huynh H, Li J-X, Liu Y-G, Du ZY, Chen MX. Importance of pre-mRNA splicing and its study tools in plants. Adv Biotechnol, 2024, 2(1): 4

[68]

Lu Y, Jiang P, Liu S, Gan Q, Cui H, Qin S. Methyl jasmonate- or gibberellins A3-induced astaxanthin accumulation is associated with up-regulation of transcription of β-carotene ketolase genes (bkts) in microalga Haematococcus pluvialis. Bioresour Technol, 2010, 101(16): 6468-6474.

[69]

Lu Y, Yue D, Xie J, Cheng L, Wang X. Ontology Specific Alternative Splicing Changes in Alzheimer's Disease. Front Genet, 2022, 13: 926049

[70]

Luo Q, Bian C, Tao M, Huang Y, Zheng Y, Lv Y, Li J, Wang C, You X, Jia B, Xu J, Li J, Li Z, Shi Q, Hu Z. Genome and Transcriptome Sequencing of the Astaxanthin-Producing Green Microalga, Haematococcus pluvialis. Genome Biol Evol, 2019, 11(1): 166-173.

[71]

Lupták A, Doudna JA. Distinct sites of phosphorothioate substitution interfere with folding and splicing of the Anabaena group I intron. Nucleic Acids Res, 2004, 32(7): 2272-2280.

[72]

Maris C, Dominguez C, Allain FH-T. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J, 2005, 272(9): 2118-2131.

[73]

Marquez Y, Brown JWS, Simpson C, Barta A, Kalyna M. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res, 2012, 22(6): 1184-1195.

[74]

Martín G, Márquez Y, Mantica F, Duque P, Irimia M. Alternative splicing landscapes in Arabidopsis thaliana across tissues and stress conditions highlight major functional differences with animals. Genome Biol, 2021, 22: 35

[75]

Mazin PV, Khaitovich P, Cardoso-Moreira M, Kaessmann H. Alternative splicing during mammalian organ development. Nat Genet, 2021, 53(6): 925-934.

[76]

McGuire AM, Pearson MD, Neafsey DE, Galagan JE. Cross-kingdom patterns of alternative splicing and splice recognition. Genome Biol, 2008, 9: R50

[77]

Meng Q, Zhang Y, Liu X-Q. Rare Group I Intron with Insertion Sequence Element in a Bacterial Ribonucleotide Reductase Gene. J Bacteriol, 2007, 189(5): 2150-2154.

[78]

Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, et al. . The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318(5848): 245-250.

[79]

Michel F, Ferat J-L. Structure and activities of group II introns. Annu Rev Biochem, 1995, 64: 435-461.

[80]

Middleton R, Gao D, Thomas A, Singh B, Au A, Wong JJ-L, Bomane A, Cosson B, Eyras E, Rasko JE, Ritchie W. IRFinder: assessing the impact of intron retention on mammalian gene expression. Genome Biol, 2017, 18: 51

[81]

Mills KV, Johnson MA, Perler FB. Protein Splicing: How Inteins Escape from Precursor Proteins. J Biol Chem, 2014, 289(21): 14498-14505.

[82]

Monteuuis G, Wong JJL, Bailey CG, Schmitz U, Rasko JEJ. The changing paradigm of intron retention: regulation, ramifications and recipes. Nucleic Acids Res, 2019, 47(22): 11497-11513.

[83]

Mutschlechner M, Walter A, Colleselli L, Griesbeck C, Schöbel H. Enhancing carotenogenesis in terrestrial microalgae by UV-A light stress. J Appl Phycol, 2022, 34(4): 1943-1955.

[84]

Ner-Gaon H, Halachmi R, Savaldi-Goldstein S, Rubin E, Ophir R, Fluhr R. Intron retention is a major phenomenon in alternative splicing in Arabidopsis. Plant J, 2004, 39(6): 877-885.

[85]

Nichols NM, Evans TC. Mutational Analysis of Protein Splicing, Cleavage, and Self-Association Reactions Mediated by the Naturally Split Ssp DnaE Intein. Biochemistry, 2004, 43(31): 10265-10276.

[86]

Nimeth BA, Riegler S, Kalyna M. Alternative Splicing and DNA Damage Response in Plants. Front Plant Sci, 2020, 11: 91.

[87]

Novikova O, Belfort M. Mobile Group II Introns as Ancestral Eukaryotic Elements. Trends Genet, 2017, 33(11): 773-783.

[88]

Novosel N, Radić TM, Zorinc ML, Zemla J, Lekka M, Vrana I, Gašparović B, Horvat L, Kasum D, Legović T, Žutinić P, Udovič MG, DeNardis NI. Salinity-induced chemical, mechanical, and behavioral changes in marine microalgae. J Appl Phycol, 2022, 34(3): 1293-1309.

[89]

Olmos-Soto J, Paniagua-Michel J, Contreras R, Trujillo L. Molecular identification of β-carotene hyper-producing strains of Dunaliella from saline environments using species-specific oligonucleotides. Biotechnol Lett, 2002, 24(5): 365-369.

[90]

Panahi B, Hejazi MA. Integrative analysis of gene expression and alternative splicing in microalgae grown under heterotrophic condition. PLoS ONE, 2020, 15(6): e0234710

[91]

Pandey M, Stormo GD, Dutcher SK. Alternative Splicing During the Chlamydomonas reinhardtii Cell Cycle. G3 Genes|Genomes|Genetics, 2020, 10(10): 3797-3810.

[92]

Paulus H. Protein Splicing and Related Forms of Protein Autoprocessing. Annu Rev Biochem, 2000, 69: 447-496.

[93]

Perlman PS, Podar M. Reactions catalyzed by group II introns in Vitro. Methods Enzymol, 1996, 264: 66-86.

[94]

Pfreundt U, Hess WR. Sequential splicing of a group II twintron in the marine cyanobacterium Trichodesmium. Sci Rep, 2015, 5: 16829

[95]

Polle JEW, Calhoun S, McKie-Krisberg Z, Prochnik S, Neofotis P, Yim WC, Hathwaik LT, Jenkins J, Molina H, Bunkenborg J, Grigoriev IV, Barry K, Schmutz J, Jin E, Cushman JC, Magnusson JK. Genomic adaptations of the green alga Dunaliella salina to life under high salinity. Algal Res, 2020, 50: 101990.

[96]

Qi H, Guo X, Wang T, Zhang Z. ASTool: An Easy-to-Use Tool to Accurately Identify Alternative Splicing Events from Plant RNA-Seq Data. Int J Mol Sci, 2022, 23(8): 4079.

[97]

Qi C, Ren H, Fan Y. Microglia specific alternative splicing alterations in multiple sclerosis. Aging, 2024, 16(15): 11656-11667.

[98]

Qian X, Zhu J, Yuan Q, Jia Q, Jin H, Han J, Sarsaiya S, Jin L, Chen J, Guo L. Illumina Sequencing Reveals Conserved and Novel MicroRNAs of Dendrobium nobile Protocorm Involved in Synthesizing Dendrobine, a Potential Nanodrug. J Biomed Nanotechnol, 2021, 17(3): 416-425.

[99]

Qiao T, Zhao Y, Zhong D, Yu X. Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium. Algal Res, 2021, 53: 102017.

[100]

Raheem A, Azlina WAKGW, Yap YHT, Danquah MK, Harun R. Thermochemical conversion of microalgal biomass for biofuel production. Renew Sustain Energy Rev, 2015, 49: 990-999.

[101]

Raj-Kumar P-K, Vallon O, Liang C. In silico analysis of the sequence features responsible for alternatively spliced introns in the model green alga Chlamydomonas reinhardtii. Plant Mol Biol, 2017, 94(3): 253-265.

[102]

Ramsoomair CK, Yakely AE, Urbanski LM, Karanja K, Giaccone ZT, Siegart NM, Wang C, Gomez AV, Reitter JN, Mills KV. Coordination of the third step of protein splicing in two cyanobacterial inteins. FEBS Lett, 2017, 591(14): 2147-2154.

[103]

Ren Q, Wang Y, Lin Y, Zhen Z, Cui Y, Qin S. The extremely large chloroplast genome of the green alga Haematococcus pluvialis: Genome structure, and comparative analysis. Algal Res, 2021, 56: 102308.

[104]

Ren Y, Deng J, Huang J, Wu Z, Yi L, Bi Y, Chen F. Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. Bioresour Technol, 2021, 340: 125736

[105]

Roy D, Verma S, Das S, Chakdar H, Pabbi S. Production and applications of cyanobacterial phycocyanin: trends and prospects. Indian J Microbiol, 2024, 65: 1567-1585.

[106]

Schmidt U, Maue I, Lehmann K, Belcher SM, Stahl U, Perlman PS. Mutant alleles of the MRS2 gene of yeast nuclear DNA suppress mutations in the catalytic core of a mitochondrial group II intron. J Mol Biol, 1998, 282(3): 525-541.

[107]

Schroda M, Vallon O, Whitelegge JP, Beck CF, Wollman F-A. The Chloroplastic GrpE Homolog of Chlamydomonas: Two Isoforms Generated by Differential Splicing. Plant Cell, 2001, 13(12): 2823-2839.

[108]

Seo HN, Bang D. Promiscuous Trans-Splicing Activities Revealed by Next Generation Sequencing-based Analysis of 298 Split Inteins. Biotechnol Bioprocess Eng, 2020, 25(2): 293-301.

[109]

Shah NH, Dann GP, Vila-Perelló M, Liu Z, Muir TW. Ultrafast Protein Splicing is Common Among Cyanobacterial Split Inteins: Implications for Protein Engineering. J Am Chem Soc, 2012, 134(28): 11338-11341.

[110]

Shao Y, Xu M-Q, Paulus H. Protein Splicing: Evidence for an N−O Acyl Rearrangement as the Initial Step in the Splicing Process. Biochemistry, 1996, 35(12): 3810-3815.

[111]

Smith DR, Lee RW, Cushman JC, Magnuson JK, Tran D, Polle JEW. The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA. BMC Plant Biol, 2010, 10: 83

[112]

Sterne-Weiler T, Weatheritt RJ, Best AJ, Ha KCH, Blencowe BJ. Efficient and Accurate Quantitative Profiling of Alternative Splicing Patterns of Any Complexity on a Laptop. Mol Cell, 2018, 72(1): 187-200.e6.

[113]

Stevens AJ, Brown ZZ, Shah NH, Sekar G, Cowburn D, Muir TW. Design of a Split Intein with Exceptional Protein Splicing Activity. J Am Chem Soc, 2016, 138(7): 2162-2165.

[114]

Stevens AJ, Sekar G, Shah NH, Mostafavi AZ, Cowburn D, Muir TW. A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A, 2017, 114(32): 8538-8543.

[115]

Steward RA, de Jong MA, Oostra V, Wheat CW. Alternative splicing in seasonal plasticity and the potential for adaptation to environmental change. Nat Commun, 2022, 13: 755

[116]

Sun J, Zan J, Zang X. Research of Fluridone’s Effects on Growth and Pigment Accumulation of Haematococcus pluvialis Based on Transcriptome Sequencing. Int J Mol Sci, 2022, 23(6): 3122

[117]

Sun H, Gong Q, Fan Y, Wang Y, Wang J, Zhu C, Mou H, Yang S, Liu J. Unlocking 3D printing technology for microalgal production and application. Adv Biotechnol, 2024, 2(4): 36

[118]

Syed NH, Kalyna M, Marquez Y, Barta A, Brown JWS. Alternative splicing in plants – coming of age. Trends Plant Sci, 2012, 17(10): 616-623.

[119]

Szádeczky-Kardoss I, Szaker HM, Verma R, Darkó É, Pettkó-Szandtner A, Silhavy D, Csorba T. Elongation factor TFIIS is essential for heat stress adaptation in plants. Nucleic Acids Res, 2022, 50(4): 1927-1950.

[120]

Tang Z, Cao X, Zhang Y, Jiang J, Qiao D, Xu H, Cao Y. Two splice variants of the DsMEK1 mitogen-activated protein kinase kinase (MAPKK) are involved in salt stress regulation in Dunaliella salina in different ways. Biotechnol Biofuels, 2020, 13: 147

[121]

Thatcher SR, Zhou W, Leonard A, Wang B-B, Beatty M, Zastrow-Hayes G, Zhao X, Baumgarten A, Li B. Genome-Wide Analysis of Alternative Splicing in Zea mays: Landscape and Genetic Regulation. Plant Cell, 2014, 26(9): 3472-3487.

[122]

Tian L, Zhao X, Liu H, Ku L, Wang S, Han Z, Wu L, Shi Y, Song X, Chen Y. Alternative splicing of ZmCCA1 mediates drought response in tropical maize. PLoS ONE, 2019, 14(1): e0211623

[123]

Togarcheti SC, Padamati RB. Comparative Life Cycle Assessment of EPA and DHA Production from Microalgae and Farmed Fish. Clean Technologies, 2021, 3(4): 699-710.

[124]

Ura H, Togi S, Niida Y. Target-capture full-length double-strand cDNA sequencing for alternative splicing analysis. RNA Biol, 2021, 18(11): 1600-1607.

[125]

Ura H, Togi S, Niida Y. Poly(A) capture full length cDNA sequencing improves the accuracy and detection ability of transcript quantification and alternative splicing events. Sci Rep, 2022, 12: 10599

[126]

Valledor L, Furuhashi T, Hanak A-M, Weckwerth W. Systemic Cold Stress Adaptation of Chlamydomonas reinhardtii. Mol Cell Proteomics, 2013, 12(8): 2032-2047.

[127]

Walter JM, Coutinho FH, Dutilh BE, Swings J, Thompson FL, Thompson CC. Ecogenomics and Taxonomy of Cyanobacteria Phylum. Front Microbiol, 2017, 8: 2132.

[128]

Wang B-B, Brendel V. Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci U S A, 2006, 103(18): 7175-7180.

[129]

Wang B-B, O’Toole M, Brendel V, Young ND. Cross-species EST alignments reveal novel and conserved alternative splicing events in legumes. BMC Plant Biol, 2008, 8(1): 17

[130]

Wang S-J, Wu M-J, Chen X-J, Jiang Y, Yan Y-B. DsHsp90 Is Involved in the Early Response of Dunaliella salina to Environmental Stress. Int J Mol Sci, 2012, 13(7): 7963-7979.

[131]

Wei S, Bian Y, Zhao Q, Chen S, Mao J, Song C, Cheng K, Xiao Z, Zhang C, Ma W, Zou H, Ye M, Dai S. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics. Front Plant Sci, 2017, 8: 810.

[132]

Wei L, Liu B, Liu D, Xu Z, Wang R, Zhang W. Identification and expression analysis of genome-wide long non-coding RNA responsive CO2 fluctuated environment in marine microalga Nannochloropsis oceanica. Mar Pollut Bull, 2022, 176: 113419

[133]

Weiner I, Atar S, Schweitzer S, Eilenberg H, Feldman Y, Avitan M, Blau M, Danon A, Tuller T, Yacoby I. Enhancing heterologous expression in Chlamydomonas reinhardtii by transcript sequence optimization. Plant J, 2018, 94(1): 22-31.

[134]

Wright CJ, Smith CWJ, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet, 2022, 23(11): 697-710.

[135]

Wu Z, Liang J, Wang C, Ding L, Zhao X, Cao X, Xu S, Teng N, Yi M. Alternative Splicing Provides a Mechanism to Regulate LlHSFA3 Function in Response to Heat Stress in Lily. Plant Physiol, 2019, 181(4): 1651-1667.

[136]

Xie H, Kjellström J, Lindblad P. Sustainable production of photosynthetic isobutanol and 3-methyl-1-butanol in the cyanobacterium Synechocystis sp. PCC 6803. Biotechnol Biofuels Bioprod, 2023, 16: 134

[137]

Xie J-Q, Zhou X, Jia, Z-C, Su C-F, Zhang Y, Fernie AR, Zhang J, Du Z-Y, Chen M-X.. Alternative Splicing, An Overlooked Defense Frontier of Plants with Respect to Bacterial Infection. J Agric Food Chem. 2023b;71(45):16883-901. https://doi.org/10.1021/acs.jafc.3c04163

[138]

Xu MQ, Perler FB. The mechanism of protein splicing and its modulation by mutation. EMBO J, 1996, 15(19): 5146-5153.

[139]

Yang H, Li P, Jin G, Gui D, Liu L, Zhang C. Temporal regulation of alternative splicing events in rice memory under drought stress. Plant Divers, 2022, 44(1): 116-125.

[140]

Yang X, Li X, Zhao J, Xie M, Li X, Jia B, Huang Y. Transcriptome Analysis Reveals the Involvement of Alternative Splicing in the Nitrogen Starvation Response of Chlamydomonas reinhardtii. Processes, 2022, 10(12): 2719

[141]

Yang X, Li M, Jia Z-C, Liu Y, Wu S-F, Chen M-X, Hao G-F, Yang Q. Unraveling the secrets: evolution of resistance mediated by membrane proteins. Drug Resist Updat, 2024, 77: 101140

[142]

Yoshimitsu Y, Abe J, Harayama S. Cas9-guide RNA ribonucleoprotein-induced genome editing in the industrial green alga Coccomyxa sp. strain KJ. Biotechnol Biofuels, 2018, 11: 326

[143]

Zaug AJ, Dávila-Aponte JA, Cech TR. Catalysis of RNA Cleavage by a Ribozyme Derived from the Group I Intron of Anabaena Pre-tRNA Leu. Biochemistry, 1994, 33(49): 14935-14947.

[144]

Zdziebłowska S, Zajda J, Ruzik L. Microalgae enriched in selenium as a good source of micronutrients. Food Biosci, 2024, 59: 103908

[145]

Zhang B, Liu X, Xie X, Huan L, Shao Z, Du Z, Wang G. Genetic evidence for functions of Chloroplast CA in Pyropia yezoensis: decreased CCM but increased starch accumulation. Adv Biotechnol. 2024;2(2):16. https://doi.org/10.1007/s44307-024-00019-7.

[146]

Zhang L, Chen W, Yang S, Zhang Y, Xu J, Yang D, Wu Z, Liu T, Cao J. Identification and Functional Characterization of a Novel Δ12 Fatty Acid Desaturase Gene from Haematococcus pluvialis. J Ocean Univ China, 2020, 19(6): 1362-1370.

[147]

Zhao X, Li F, Ali M, Li X, Fu X, Zhang X. Emerging roles and mechanisms of lncRNAs in fruit and vegetables. Hortic Res, 2024, 11(4): uhae046

[148]

Zhu F-Y, Chen M-X, Ye N-H, Shi L, Ma K-L, Yang J-F, Cao YY, Zhang Y, Yoshida T, Fernie AR, Fan GY, Wen B, Zhou R, Liu TY, Fan T, Gao B, Zhang D, Hao GF, Xiao S, et al. . Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings. Plant J, 2017, 91(3): 518-533.

[149]

Zhu J, Wang X, Xu Q, Zhao S, Tai Y, Wei C. Global dissection of alternative splicing uncovers transcriptional diversity in tissues and associates with the flavonoid pathway in tea plant (Camellia sinensis). BMC Plant Biol, 2018, 18: 266

[150]

Zhu M, Singer SD, Guan LL, Chen G. Emerging microalgal feed additives for ruminant production and sustainability. Adv Biotechnol. 2024;2(2):17. https://doi.org/10.1007/s44307-024-00024-w.

Funding

National Science Foundation(2121410)

RIGHTS & PERMISSIONS

The Author(s)

PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

/