Direct detection of meiotic recombination events in the highly heterozygous amphioxus genome

Lei Tao , Jing Xue , Junwei Cao , Guang Li , Cai Li

Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (4) : 30

PDF
Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (4) : 30 DOI: 10.1007/s44307-025-00083-7
Article
research-article

Direct detection of meiotic recombination events in the highly heterozygous amphioxus genome

Author information +
History +
PDF

Abstract

Amphioxus, a basal chordate with highly heterozygous genomes (3.2 ~ 4.2% in sequenced species), represents a key model for understanding vertebrate origins. However, the extreme heterozygosity poses challenges for many genomic analyses, including studying meiotic recombination. Here, we present a novel bioinformatic pipeline that enables direct detection of crossover (CO) and non-crossover (NCO) recombination events using short-read whole-genome sequencing of a two-generation pedigree (two parents and 104 F1 offspring) of the amphioxus Branchiostoma floridae. Using parental assemblies generated by Platanus-allee as a custom reference for read alignment, we tracked inheritance patterns in offspring and phased contig-level haplotypes in parents, allowing us to detect recombination events. We identified 2,329 paternal and 2,288 maternal COs, yielding recombination rates of 4.66 cM/Mb and 4.57 cM/Mb, respectively. We found CO coldspots spanning > 140 Mb in each parent and these are likely associated with large-scale heterozygous inversions. CO rates were positively correlated with transposable element and gene density in both sexes, but showed weak or no correlation with GC content. We further identified ~ 10,000 paternal and ~ 5,800 maternal NCO events, predominantly shorter than 200 bp in tract length, and found evidence of GC-biased gene conversion. This work provides the first direct and genome-wide measurement of recombination in amphioxus and demonstrates how high heterozygosity, often considered a barrier, can be leveraged for fine-scale recombination mapping. Our findings illuminate conserved and divergent features of recombination in chordates and establish a framework for studying recombination in other highly heterozygous organisms.

Keywords

Amphioxus / Recombination / Crossover / Non-crossover / Highly heterozygous genomes

Cite this article

Download citation ▾
Lei Tao, Jing Xue, Junwei Cao, Guang Li, Cai Li. Direct detection of meiotic recombination events in the highly heterozygous amphioxus genome. Advanced Biotechnology, 2025, 3(4): 30 DOI:10.1007/s44307-025-00083-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aggarwal DD, Rybnikov S, Sapielkin S. et al.. Seasonal changes in recombination characteristics in a natural population of Drosophila melanogaster. Heredity (Edinb), 2021, 127(3): 278-287.

[2]

Capra JA, Hubisz MJ, Kostka D. et al.. A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes. PLoS Genet, 2013, 9(8): e1003684.

[3]

Cooney CR, Mank JE, Wright AE. Constraint and divergence in the evolution of male and female recombination rates in fishes. Evol, 2021, 75(11): 2857-2866.

[4]

D’Aniello S, Bertrand S, Escriva H. Amphioxus as a model to study the evolution of development in chordates. Elife, 2023, 12: e87028.

[5]

Delsuc F, Brinkmann H, Chourrout D. et al.. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature, 2006, 439(7079): 965-968.

[6]

Dolgin ES, Charlesworth B. The effects of recombination rate on the distribution and abundance of transposable elements. Genetics, 2008, 178(4): 2169-2177.

[7]

Dumont BL. Variation and evolution of the meiotic requirement for crossing over in mammals. Genetics, 2017, 205(1): 155-168.

[8]

Glemin S, Arndt PF, Messer PW. et al.. Quantification of GC-biased gene conversion in the human genome. Genome Res, 2015, 25(8): 1215-1228.

[9]

Haag CR, Theodosiou L, Zahab R. et al.. Low recombination rates in sexual species and sex-asex transitions. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1736): 20160461.

[10]

Harringmeyer OS, Hoekstra HE. Chromosomal inversion polymorphisms shape the genomic landscape of deer mice. Nat Ecol Evol, 2022, 6(12): 1965-1979.

[11]

Heller D, Vingron M. SVIM-asm: structural variant detection from haploid and diploid genome assemblies. Bioinformatics, 2021, 36(22–23): 5519-5521.

[12]

Holland LZ. Chordate roots of the vertebrate nervous system: expanding the molecular toolkit. Nat Rev Neurosci, 2009, 10(10): 736-746.

[13]

Huang W, Li L, Myers JR. et al.. ART: a next-generation sequencing read simulator. Bioinformatics, 2012, 28(4): 593-594.

[14]

Huang S, Chen Z, Yan X. et al.. Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes. Nat Commun, 2014, 5: 5896.

[15]

Huang Z, Xu L, Cai C. et al.. Three amphioxus reference genomes reveal gene and chromosome evolution of chordates. Proc Natl Acad Sci U S A, 2023, 120(10): e2093463176.

[16]

Jiang X, Li D, Du H. et al.. Genomic features of meiotic crossovers in diploid potato. Hortic Res, 2023, 10(6): d79.

[17]

Johnston SE. Understanding the genetic basis of variation in meiotic recombination: past, present, and future. Mol Biol Evol, 2024, 41(7): msae112.

[18]

Kajitani R, Yoshimura D, Okuno M. et al.. Platanus-allee is a de novo haplotype assembler enabling a comprehensive access to divergent heterozygous regions. Nat Commun, 2019, 10(1): 1702.

[19]

Kent TV, Uzunovic J, Wright SI. Coevolution between transposable elements and recombination. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1736): 20160458.

[20]

Kong A, Thorleifsson G, Gudbjartsson DF. et al.. Fine-scale recombination rate differences between sexes, populations and individuals. Nature, 2010, 467(7319): 1099-1103.

[21]

Lenormand T, Engelstadter J, Johnston SE. et al.. Evolutionary mysteries in meiosis. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1706): 20160001.

[22]

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 2018, 34(18): 3094-3100.

[23]

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 2009, 25(14): 1754-1760.

[24]

Li G, Shu Z, Wang Y. Year-round reproduction and induced spawning of Chinese amphioxus, Branchiostoma belcheri, in laboratory. PLoS One, 2013, 8(9): e75461.

[25]

Li R, Bitoun E, Altemose N. et al.. A high-resolution map of non-crossover events reveals impacts of genetic diversity on mammalian meiotic recombination. Nat Commun, 2019, 10(1): 3900.

[26]

Li R, Qu H, Chen J. et al.. Inference of chromosome-length haplotypes using genomic data of three or a few more single gametes. Mol Biol Evol, 2020, 37(12): 3684-3698.

[27]

Li J, Llorente B, Liti G. et al.. Recombinex: a generalized computational framework for automatic high-throughput gamete genotyping and tetrad-based recombination analysis. PLoS Genet, 2022, 18(5): e1010047.

[28]

Li H, Berent E, Hadjipanteli S. et al.. Heterozygous inversion breakpoints suppress meiotic crossovers by altering recombination repair outcomes. PLoS Genet, 2023, 19(4): e1010702.

[29]

Limborg MT, McKinney GJ, Seeb LW. et al.. Recombination patterns reveal information about centromere location on linkage maps. Mol Ecol Resour, 2016, 16(3): 655-661.

[30]

Luo C, Li X, Zhang Q. et al.. Single gametophyte sequencing reveals that crossover events differ between sexes in maize. Nat Commun, 2019, 10(1): 785.

[31]

Marand AP, Jansky SH, Zhao H. et al.. Meiotic crossovers are associated with open chromatin and enriched with Stowaway transposons in potato. Genome Biol, 2017, 18(1): 203.

[32]

Marcais G, Delcher AL, Phillippy AM. et al.. MUMmer4: a fast and versatile genome alignment system. PLoS Comput Biol, 2018, 14(1): e1005944.

[33]

Masaki N, Browning SR. Mean gene conversion tract length in humans estimated to be 459 bp from UK Biobank sequence data. bioRxiv. 2025.

[34]

McKenna A, Hanna M, Banks E. et al.. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res, 2010, 20(9): 1297-1303.

[35]

Morgan AP, Gatti DM, Najarian ML. et al.. Structural variation shapes the landscape of recombination in mouse. Genetics, 2017, 206(2): 603-619.

[36]

Paigen K, Petkov PM. PRDM9 and its role in genetic recombination. Trends Genet, 2018, 34(4): 291-300.

[37]

Palsson G, Hardarson MT, Jonsson H. et al.. Complete human recombination maps. Nature, 2025, 639(8055): 700-707.

[38]

Penalba JV, Wolf J. From molecules to populations: appreciating and estimating recombination rate variation. Nat Rev Genet, 2020, 21(8): 476-492.

[39]

Peng J, Korol AB, Fahima T. et al.. Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res, 2000, 10(10): 1509-1531.

[40]

Prentout D, Bykova D, Hoge C. et al.. Germline mutation rates and fine-scale recombination parameters in zebra finch. PLoS Genet, 2025, 21(4): e1011661.

[41]

Putnam NH, Butts T, Ferrier DE. et al.. The amphioxus genome and the evolution of the chordate karyotype. Nature, 2008, 453(7198): 1064-1071.

[42]

Quinlan AR, Hall IM. BEDtools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 2010, 26(6): 841-842.

[43]

Schnable PS, Ware D, Fulton RS. et al.. The b73 maize genome: complexity, diversity, and dynamics. Science, 2009, 326(5956): 1112-1115.

[44]

Schubert M, Escriva H, Xavier-Neto J. et al.. Amphioxus and tunicates as evolutionary model systems. Trends Ecol Evol, 2006, 21(5): 269-277.

[45]

Shi C, Wu X, Su L. et al.. A zz/zw sex chromosome system in cephalochordate amphioxus. Genetics, 2020, 214(3): 617-622.

[46]

Stapley J, Feulner P, Johnston SE. et al.. Variation in recombination frequency and distribution across eukaryotes: patterns and processes. Philos Trans R Soc Lond B Biol Sci, 2017, 372(1736): 20160455.

[47]

Szasz-Green T, Shores K, Vanga V. et al.. Comparative phylogenetics reveal clade-specific drivers of recombination rate evolution across vertebrates. Mol Biol Evol, 2025.

[48]

Tao X, Yuan S, Chen F. et al.. Functional requirement of terminal inverted repeats for efficient ProtoRAG activity reveals the early evolution of V(D)J recombination. Natl Sci Rev, 2020, 7(2): 403-417.

[49]

Vincenten N, Kuhl LM, Lam I. et al.. The kinetochore prevents centromere-proximal crossover recombination during meiosis. Elife, 2015, 4: e10850.

[50]

Wang X, Li Z, Feng T. et al.. Chromosome-level genome and recombination map of the male buffalo. Gigascience, 2022, 12: giad063.

[51]

Xie H, Li W, Guo Y. et al.. Long-read-based single sperm genome sequencing for chromosome-wide haplotype phasing of both SNPs and SVs. Nucleic Acids Res, 2023, 51(15): 8020-8034.

[52]

Xue J, Tao L, Cao J, et al. Germline de novo mutation rate of the highly heterozygous amphioxus genome. bioRxiv. 2025.

[53]

Yuan S, Tao X, Huang S. et al.. Comparative immune systems in animals. Annu Rev Anim Biosci, 2014, 2: 235-258.

[54]

Zhang W, Tariq A, Jia X. et al.. Plant sperm cell sequencing for genome phasing and determination of meiotic crossover points. Nat Protoc, 2025, 20(3): 690-708.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/