Thermo-related degeneration of stumpy forms of Trypanosoma brucei, the pathogen of African sleeping sickness

Jia-Yi Luo , Ju-Feng Wang , Jiong Yang , Peng Zhang , Geoff Hide , De-Hua Lai , Zhao-Rong Lun

Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (4)

PDF
Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (4) DOI: 10.1007/s44307-025-00081-9
Article
research-article

Thermo-related degeneration of stumpy forms of Trypanosoma brucei, the pathogen of African sleeping sickness

Author information +
History +
PDF

Abstract

Trypanosoma brucei, the causative agent of African trypanosomiasis, develops from the long slender (LS) to the short stumpy (SS) form in the mammalian host. The SS trypanosomes are critical for transmission to the insect vector but face significant challenges within the vertebrate host. The role of the immune response in controlling the parasitaemia is well studied, however, the mechanism underpinning the rapid degeneration of SS trypanosomes during the first parasitaemic peak in mice remains somewhat elusive. We demonstrate that fever is a critical yet underexplored factor in facilitating the clearance of SS trypanosomes, suggesting that temperature may play a critical role in regulating the natural turnover of SS trypanosomes. The elevated body temperature correlates with the parasitaemic dynamics, accelerating SS trypanosome elimination in the mammalian host. The SS trypanosomes exhibited high thermo-sensitivity to elevated temperatures, accompanied with apoptosis-like events, mitochondrial damage and oxidative stress. Metabolomic profiling also revealed disruptions in glycolysis and the TCA cycle, shedding light on the processes in compromising the SS trypanosomes. Interestingly, antibodies during the acute phase did not directly cause SS trypanosomes death, but the combination of elevated temperature and antibodies enhanced the clearance of SS trypanosomes, highlighting the critical role of fever in eliminating the first parasitaemic peak. Our findings detail the mechanism of vulnerability of SS trypanosome to elevated temperatures and suggest that host fever serves as a neglected, but critical mechanism, for T. brucei SS trypanosome clearance.

Keywords

Trypanosoma brucei / Stumpy form / Fever-related clearance / Mitochondrial dysfunction / Oxidative stress / Metabolic disruption

Cite this article

Download citation ▾
Jia-Yi Luo, Ju-Feng Wang, Jiong Yang, Peng Zhang, Geoff Hide, De-Hua Lai, Zhao-Rong Lun. Thermo-related degeneration of stumpy forms of Trypanosoma brucei, the pathogen of African sleeping sickness. Advanced Biotechnology, 2025, 3(4): DOI:10.1007/s44307-025-00081-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbdisaT. Review on practical guidance of veterinary clinical diagnostic approach. Int J Vet Sci Res, 2017, 3: 6-25.

[2]

BanerjeeM, ParaiD, DharP, RoyM, BarikR, ChattopadhyayS, et al.. Andrographolide induces oxidative stress-dependent cell death in unicellular protozoan parasite Trypanosoma brucei. Acta Trop, 2017, 176: 58-67.

[3]

BesteiroS, BiranM, BiteauN, CoustouV, BaltzT, CanioniP, et al.. Succinate secreted by Trypanosoma brucei is produced by a novel and unique glycosomal enzyme, NADH-dependent fumarate reductase. J Biol Chem, 2002, 277: 38001-12.

[4]

BlackSJ, HewettRS, SendashongaCN. Trypanosoma brucei variable surface antigen is released by degenerating parasites but not by actively dividing parasites. Parasite Immunol, 1982, 4: 233-44.

[5]

BlackSJ, SendashongaCN, LalorPA, WhitelawDD, JackRM, MorrisonWI, et al.. Regulation of the growth and differentiation of Trypanosoma (Trypanozoon) brucei brucei in resistant (C57Bl/6) and susceptible (C3H/He) mice. Parasite Immunol, 1983, 5: 465-78.

[6]

BlackSJ, SendashongaCN, WebsterP, KochGL, ShapiroSZ. Regulation of parasite-specific antibody responses in resistant (C57BL/6) and susceptible (C3H/HE) mice infected with Trypanosoma (trypanozoon) brucei brucei. Parasite Immunol, 1986, 8: 425-42.

[7]

BlackSJ, GuirnaldaP, FrenkelD, HaynesC, BockstalV. Induction and regulation of Trypanosoma brucei VSG-specific antibody responses. Parasitology, 2010, 137: 2041-2049.

[8]

BogaczM, DirdjajaN, WimmerB, HabichC, Krauth-SiegelRL. The mitochondrial peroxiredoxin displays distinct roles in different developmental stages of African trypanosomes. Redox Biol, 2020, 34. 101547

[9]

Brun R, Schonenberger M. Cultivation and in vitro cloning or procyclic culture forms of Trypanosoma brucei in a semi-defined medium. Acta Trop. 1979;36:289–92.

[10]

BuscherP, CecchiG, JamonneauV, PriottoG. Human African trypanosomiasis. Lancet, 2017, 390: 2397-409.

[11]

CaljonG, Van ReetN, De TrezC, VermeerschM, Perez-MorgaD, Van Den AbbeeleJ. The dermis as a delivery site of Trypanosoma brucei for tsetse flies. PLoS Pathog, 2016, 12. e1005744

[12]

CapewellP, Cren-TravailleC, MarchesiF, JohnstonP, ClucasC, BensonRA, et al.. The skin is a significant but overlooked anatomical reservoir for vector-borne African trypanosomes. Elife, 2016.

[13]

ChenN, JinK, XuJ, ZhangJ, WengY. Human African trypanosomiasis caused by Trypanosoma brucei gambiense: the first case report in China. Int J Infect Dis, 2019, 79: 34-36.

[14]

CoustouV, BesteiroS, RiviereL, BiranM, BiteauN, FranconiJM, et al.. A mitochondrial NADH-dependent fumarate reductase involved in the production of succinate excreted by procyclic Trypanosoma brucei. J Biol Chem, 2005, 280: 16559-70.

[15]

CzichosJ, NonnengaesserC, OverathP. Trypanosoma brucei: cis-aconitate and temperature reduction as triggers of synchronous transformation of bloodstream to procyclic trypomastigotes in vitro. Exp Parasitol, 1986, 62(2): 283-91.

[16]

DejungM, SubotaI, BuceriusF, DindarG, FreiwaldA, EngstlerM, BoshartM, ButterF, JanzenCJ. Quantitative proteomics uncovers novel factors involved in developmental differentiation of Trypanosoma brucei. PLoS Pathog, 2016, 12. e1005439

[17]

DelauwMF, PaysE, SteinertM, AertsD, Van MeirvenneN, Le RayD. Inactivation and reactivation of a variant-specific antigen gene in cyclically transmitted Trypanosoma brucei. EMBO J, 1985, 4: 989-93.

[18]

DokoA, VerhulstA, PandeyVS, Van der StuyftP. Artificially induced Trypanosoma brucei brucei infection in Lagune and Borgou cattle in Benin. Vet Parasitol, 1997, 69: 151-7.

[19]

DrollD, MiniaI, FaddaA, SinghA, StewartM, QueirozR, ClaytonC. Post-transcriptional regulation of the trypanosome heat shock response by a zinc finger protein. PLoS Pathog, 2013, 9. e1003286

[20]

DwingerRH, VosJ, NieuwenhuijsJ, ZwartD, van MiertAS. Studies on the influence of non-steroidal anti-inflammatory drugs upon trypanosomiasis in goats and sheep. J Vet Pharmacol Ther, 1984, 7: 293-301.

[21]

EngstlerM, BoshartM. Cold shock and regulation of surface protein trafficking convey sensitization to inducers of stage differentiation in Trypanosoma brucei. Genes Dev, 2004, 18: 2798-811.

[22]

FangJ, BeattieDS. Rotenone-insensitive NADH dehydrogenase is a potential source of superoxide in procyclic Trypanosoma brucei mitochondria. Mol Biochem Parasitol, 2002, 123: 135-42.

[23]

GoldshmidtH, MatasD, KabiA, CarmiS, HopeR, MichaeliS. Persistent ER stress induces the spliced leader RNA silencing pathway (SLS), leading to programmed cell death in Trypanosoma brucei. PLoS Pathog, 2010, 6. e1000731

[24]

GrantPT, FultonJD. The catabolism of glucose by strains of Trypanosoma rhodesiense. Biochem J, 1957, 66: 242-50.

[25]

Hierro-YapC, SubrtovaK, GahuraO, PanicucciB, DewarC, ChinopoulosC, SchnauferA, ZikovaA. Bioenergetic consequences of F(o)F(1)-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J Biol Chem, 2021, 296. 100357

[26]

HirumiH, HirumiK. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J Parasitol, 1989, 75: 985-989.

[27]

KabaniS, FennK, RossA, IvensA, SmithTK, GhazalP, MatthewsK. Genome-wide expression profiling of in vivo-derived bloodstream parasite stages and dynamic analysis of mRNA alterations during synchronous differentiation in Trypanosoma brucei. BMC Genomics, 2009, 10427.

[28]

KabiriM, SteverdingD. Identification of a developmentally regulated iron superoxide dismutase of Trypanosoma brucei. Biochem J, 2001, 360: 173-7.

[29]

KellyS, ReedJ, KramerS, EllisL, WebbH, SunterJ, et al.. Functional genomics in Trypanosoma brucei: a collection of vectors for the expression of tagged proteins from endogenous and ectopic gene loci. Mol Biochem Parasitol, 2007, 154: 103-9.

[30]

KennedyPG. Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol, 2013, 12: 186-194.

[31]

KimJH, LeeSR, LiLH, ParkHJ, ParkJH, LeeKY, KimMK, ShinBA, ChoiSY. High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS ONE, 2011, 6. e18556

[32]

KirkinezosIG, MoraesCT. Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol, 2001, 12: 449-457.

[33]

LarcombeSD, BriggsEM, SavillN, SzoorB, MatthewsKR. The developmental hierarchy and scarcity of replicative slender trypanosomes in blood challenges their role in infection maintenance. Proc Natl Acad Sci U S A, 2023, 120. e2306848120

[34]

LevyGV, BanuelosCP, NittoloAG, OrtizGE, MendiondoN, MorettiG, et al.. Depletion of the SR-related protein TbRRM1 leads to cell cycle arrest and apoptosis-like death in Trypanosoma brucei. PLoS ONE, 2015, 10. e0136070

[35]

Lim, K.T., Yeoh, C.Y., Zainuddin, Z., and Ilham Adenan, M. (2019). (+)-Spectaline and iso-6-spectaline induce a possible cross-talk between autophagy and apoptosis in Trypanosoma brucei rhodesiense. Trop Med Infect Dis 4.

[36]

LiuQ, ChenXL, ChenMX, XieHG, LiuQ, ChenZY, LinYY, ZhengH, ChenJX, ZhangY, et al.. Trypanosoma brucei rhodesiense infection in a Chinese traveler returning from the Serengeti National Park in Tanzania. Infect Dis Poverty, 2018, 750.

[37]

LiuG, FuY, YosriM, ChenY, SunP, XuJ, et al.. CRIg plays an essential role in intravascular clearance of bloodborne parasites by interacting with complement. Proc Natl Acad Sci U S A, 2019, 116: 24214-20.

[38]

LunZR, LaiDH, WenYZ, ZhengLL, ShenJL, YangTB, et al.. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii. Proc Natl Acad Sci U S A, 2015, 112: 8835-42.

[39]

MacGregorP, SavillNJ, HallD, MatthewsKR. Transmission stages dominate trypanosome within-host dynamics during chronic infections. Cell Host Microbe, 2011, 9: 310-318.

[40]

MacleodOJS, CookAD, WebbH, CrowM, BurnsR, RedpathM, SeisenbergerS, TrevorCE, PeacockL, SchwedeA, et al.. Invariant surface glycoprotein 65 of Trypanosoma brucei is a complement C3 receptor. Nat Commun, 2022, 135085.

[41]

MagezS, SchwegmannA, AtkinsonR, ClaesF, DrennanM, De BaetselierP, BrombacherF. The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in Trypanosoma brucei-infected mice. PLoS Pathog, 2008, 4. e1000122

[42]

MalatjiDP. Breeding of African sheep reared under low-input/output smallholder production systems for trypanotolerance. Vet World, 2022, 15: 1031-1043.

[43]

MazetM, MorandP, BiranM, BouyssouG, CourtoisP, DaulouedeS, et al.. Revisiting the central metabolism of the bloodstream forms of Trypanosoma brucei: production of acetate in the mitochondrion is essential for parasite viability. PLoS Negl Trop Dis, 2013, 7. e2587

[44]

McLintockLM, TurnerCM, VickermanK. Comparison of the effects of immune killing mechanisms on Trypanosoma brucei parasites of slender and stumpy morphology. Parasite Immunol, 1993, 15: 475-80.

[45]

Menna-BarretoRFS. Cell death pathways in pathogenic trypanosomatids: lessons of (over)kill. Cell Death Dis, 2019, 1093.

[46]

MichelsPAM, VillafrazO, PinedaE, AlencarMB, CaceresAJ, SilberAM, et al.. Carbohydrate metabolism in trypanosomatids: new insights revealing novel complexity, diversity and species-unique features. Exp Parasitol, 2021, 224. 108102

[47]

MonyBM, MatthewsKR. Assembling the components of the quorum sensing pathway in African trypanosomes. Mol Microbiol, 2015, 96: 220-232.

[48]

MugnierMR, CrossGA, PapavasiliouFN. The in vivo dynamics of antigenic variation in Trypanosoma brucei. Science, 2015, 347: 1470-3.

[49]

MurrayM, TrailJC, D’IeterenGD. Trypanotolerance in cattle and prospects for the control of trypanosomiasis by selective breeding. Rev Sci Tech, 1990, 9: 369-86.

[50]

NolanDP, VoorheisHP. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase. Eur J Biochem, 1992, 209: 207-16.

[51]

OoiCP, BenzC, UrbaniakMD. Phosphoproteomic analysis of mammalian infective Trypanosoma brucei subjected to heat shock suggests atypical mechanisms for thermotolerance. J Proteomics, 2020, 219. 103735

[52]

PapagniR, NovaraR, MinardiML, FrallonardoL, PanicoGG, PallaraE, CotugnoS, Ascoli BartoliT, GuidoG, De VitaE, et al.. Human African trypanosomiasis (sleeping sickness): current knowledge and future challenges. Front Trop Dis, 2023.

[53]

PaulM, StefaniakJ, SmuszkiewiczP, Van EsbroeckM, GeysenD, ClerinxJ. Outcome of acute East African trypanosomiasis in a Polish traveller treated with pentamidine. BMC Infect Dis, 2014, 14. 111

[54]

PiccioneG, RefinettiR. Thermal chronobiology of domestic animals. Front Biosci, 2003, 8s258–264

[55]

RaniR, NarasimhanB, VarmaRS, KumarR. Naphthoquinone derivatives exhibit apoptosis-like effect and anti-trypanosomal activity against Trypanosoma evansi. Vet Parasitol, 2021, 290. 109367

[56]

RaperJ, FungR, GhisoJ, NussenzweigV, TomlinsonS. Characterization of a novel trypanosome lytic factor from human serum. Infect Immun, 1999, 67: 1910-1916.

[57]

ReunerB, VassellaE, YutzyB, BoshartM. Cell density triggers slender to stumpy differentiation of Trypanosoma brucei bloodstream forms in culture. Mol Biochem Parasitol, 1997, 90: 269-80.

[58]

ReuterC, HaufL, ImdahlF, SenR, VafadarnejadE, FeyP, FingerT, JonesNG, WallesH, BarquistL, et al.. Vector-borne Trypanosoma brucei parasites develop in artificial human skin and persist as skin tissue forms. Nat Commun, 2023, 147660.

[59]

RicoE, RojasF, MonyBM, SzoorB, MacgregorP, MatthewsKR. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei. Front Cell Infect Microbiol, 2013, 3. 78

[60]

RifkinMR. Identification of the trypanocidal factor in normal human serum: high density lipoprotein. Proc Natl Acad Sci U S A, 1978, 75: 3450-3454.

[61]

Rijo-FerreiraF, CarvalhoT, AfonsoC, Sanches-VazM, CostaRM, FigueiredoLM, TakahashiJS. Sleeping sickness is a circadian disorder. Nat Commun, 2018, 962.

[62]

SavillNJ, SeedJR. Mathematical and statistical analysis of the Trypanosoma brucei slender to stumpy transition. Parasitology, 2004, 128: 53-67.

[63]

SavitskayaMA, OnishchenkoGE. Mechanisms of apoptosis. Biochemistry (Mosc), 2015, 80: 1393-1405.

[64]

SchnauferA, Clark-WalkerGD, SteinbergAG, StuartK. The F1-ATP synthase complex in bloodstream stage trypanosomes has an unusual and essential function. EMBO J, 2005, 24: 4029-4040.

[65]

SchusterS, LisackJ, SubotaI, ZimmermannH, ReuterC, MuellerT, MorriswoodB, EngstlerM. Unexpected plasticity in the life cycle of Trypanosoma brucei. Elife, 2021.

[66]

SendashongaCN, BlackSJ. Humoral responses against Trypanosoma brucei variable surface antigen are induced by degenerating parasites. Parasite Immunol, 1982, 4: 245-57.

[67]

SendashongaCN, BlackSJ. Analysis of B cell and T cell proliferative responses induced by monomorphic and pleomorphic Trypanosoma brucei parasites in mice. Parasite Immunol, 1986, 8: 443-53.

[68]

ShahVV, PatelVM, VyasP. Human African trypanosomiasis - a rare case report from India. Indian J Med Microbiol, 2022, 40: 169-171.

[69]

ShiM, WeiG, PanW, TabelH. Trypanosoma congolense infections: antibody-mediated phagocytosis by Kupffer cells. J Leukoc Biol, 2004, 76: 399-405.

[70]

SmirlisD, DuszenkoM, RuizAJ, ScoulicaE, BastienP, FaselN, et al.. Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasit Vectors, 2010, 3. 107

[71]

SmithTK, BringaudF, NolanDP, FigueiredoLM. Metabolic reprogramming during the Trypanosoma brucei life cycle. F1000Res, 2017.

[72]

TaylorNA, TiptonMJ, KennyGP. Considerations for the measurement of core, skin and mean body temperatures. J Therm Biol, 2014, 46: 72-101.

[73]

TothLA, TolleyEA, BroadyR, BlakelyB, KruegerJM. Sleep during experimental trypanosomiasis in rabbits. Proc Soc Exp Biol Med, 1994, 205: 174-181.

[74]

TrindadeS, Rijo-FerreiraF, CarvalhoT, Pinto-NevesD, GueganF, Aresta-BrancoF, BentoF, YoungSA, PintoA, Van Den AbbeeleJ, et al.. Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe, 2016, 19: 837-848.

[75]

TrindadeS, De NizM, Costa-SequeiraM, Bizarra-RebeloT, BentoF, DejungM, et al.. Slow growing behavior in African trypanosomes during adipose tissue colonization. Nat Commun, 2022, 13. 7548

[76]

TurnerCM, AslamN, DyeC. Replication, differentiation, growth and the virulence of Trypanosoma brucei infections. Parasitology, 1995, 111(Pt 3): 289-300.

[77]

VanwalleghemG, FontaineF, LecordierL, TebabiP, KleweK, NolanDP, et al.. Coupling of lysosomal and mitochondrial membrane permeabilization in trypanolysis by APOL1. Nat Commun, 2015, 6. 8078

[78]

VassellaE, BoshartM. High molecular mass agarose matrix supports growth of bloodstream forms of pleomorphic Trypanosoma brucei strains in axenic culture. Mol Biochem Parasitol, 1996, 82(1): 91-105.

[79]

VassellaE, ReunerB, YutzyB, BoshartM. Differentiation of African trypanosomes is controlled by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. J Cell Sci, 1997, 110(Pt 21): 2661-2671.

[80]

VickermanK. Developmental cycles and biology of pathogenic trypanosomes. Br Med Bull, 1985, 41: 105-114.

[81]

VillafrazO, BiranM, PinedaE, PlazollesN, CahoreauE, Ornitz Oliveira SouzaR, et al.. Procyclic trypanosomes recycle glucose catabolites and TCA cycle intermediates to stimulate growth in the presence of physiological amounts of proline. PLoS Pathog, 2021, 17. e1009204

[82]

WargniesM, PlazollesN, SchenkR, VillafrazO, DupuyJW, BiranM, BachmaierS, BaudouinH, ClaytonC, BoshartM, et al.. Metabolic selection of a homologous recombination-mediated gene loss protects Trypanosoma brucei from ROS production by glycosomal fumarate reductase. J Biol Chem, 2021, 296. 100548

[83]

WelldeBT, ReardonMJ, KovatchRM, ChumoDA, WilliamsJS, BoyceWL, et al.. Experimental infection of cattle with Trypanosoma brucei rhodesiense. Ann Trop Med Parasitol, 1989, 83(Suppl 1): 133-50.

[84]

WilliamsS, SahaL, SinghaUK, ChaudhuriM. Trypanosoma brucei: differential requirement of membrane potential for import of proteins into mitochondria in two developmental stages. Exp Parasitol, 2008, 118: 420-33.

[85]

YagnikKJ, Pezo-SalazarA, RosenbaumD, JasoJM, CavuotiD, NelsonB, et al.. A wandering missionary’s burden: persistent fever and progressive somnolence in a returning traveler. Open Forum Infect Dis, 2021, 8. ofab377

[86]

ZikovaA. Mitochondrial adaptations throughout the Trypanosoma brucei life cycle. J Eukaryot Microbiol, 2022, 69. e12911

[87]

ZwartD, BrunR, DwingerRH, van MiertAS, FranssenFF, NieuwenhuijsJ, KooyRF. Influence of fever and flurbiprofen on trypanosome growth. Acta Trop, 1990, 47: 115-123.

Funding

National Natural Science Foundation of China(32270446)

Natural Sciences Foundation of Guangdong Province(2022A1515011874)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/