Microalgae-driven microrobots: revolutionizing drug delivery and targeted therapy in biopharmaceuticals

Xianmin Wang , Songlin Ma , Renwu Liu , Tiexin Zhang , Xinyu Mao , Yuxue Chen , Pengcheng Wan , Zhanyou Chi , Fantao Kong

Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (3) : 19

PDF
Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (3) : 19 DOI: 10.1007/s44307-025-00073-9
Review

Microalgae-driven microrobots: revolutionizing drug delivery and targeted therapy in biopharmaceuticals

Author information +
History +
PDF

Abstract

Microalgae are a group of photosynthetic autotrophic microorganisms that are classified as Generally Recognized as safe (GRAS). They are rich in high-value bioactive compounds with broad applications in food, healthcare and pharmaceuticals. Recent research demonstrated that microalgae have significant potential as innovative biomaterials for biomedical applications. The unique phototactic movement of microalgae enables them controlled drug delivery to targeted tissues in patients. Furthermore, microalgae produce oxygen via photosynthesis when exposed to light, overcoming tumor hypoxia limitations and improving biomedical imaging in vivo. Additionally, the intrinsic biophysical properties and modifiability of microalgae can be harnessed for the development of biohybrid robots and bioprinting, expanding their clinical applications. This review highlights current engineering innovations in microalgae for medical applications, such as drug delivery, tumor hypoxia targeting, wound healing, and immunotherapy. The remarkable biocompatibility, diverse biological functionalities, and cost-effectiveness of microalgae provide a promising platform for future application of targeted drug delivery and precision medicine.

Keywords

Microalgae / Drug delivery / Targeted therapy / Biopharmaceuticals / 3D bioprinting

Cite this article

Download citation ▾
Xianmin Wang, Songlin Ma, Renwu Liu, Tiexin Zhang, Xinyu Mao, Yuxue Chen, Pengcheng Wan, Zhanyou Chi, Fantao Kong. Microalgae-driven microrobots: revolutionizing drug delivery and targeted therapy in biopharmaceuticals. Advanced Biotechnology, 2025, 3(3): 19 DOI:10.1007/s44307-025-00073-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbdullahM, AliZ, YasinMT, AmanatK, SarwarF, KhanJ, AhmadK. Advancements in sustainable production of biofuel by microalgae : Recent insights and future directions. Environ Res, 2024, 262 ArticleID: 119902

[2]

AbiusiF, TrompetterE, PollioA, WijffelsRH, JanssenM. Acid Tolerant and Acidophilic Microalgae : An Underexplored World of Biotechnological Opportunities. Front Microbiol, 2022, 13, 820907

[3]

AdamoG, FierliD, RomancinoDP, PicciottoS, BaroneME, AranyosA, BozicD, MorsbachS, RaccostaS, StanlyC, PaganiniC, GaiM, CusimanoA, MartoranaV, NotoR, CarrottaR, LibrizziF, RandazzoL, ParkesR, PalmieroUC, RaoE, PaternaA, SantonicolaP, IglicA, CorcueraL, KisslingerA, Di SchiaviE, LiguoriGL, LandfesterK, Kralj-IglicV, ArosioP, PocsfalviG, TouzetN, MannoM, BongiovanniA. Nanoalgosomes : Introducing extracellular vesicles produced by microalgae. Journal of Extracellular Vesicles, 2021, 10(6) e12081

[4]

AdamoG, SantonicolaP, PicciottoS, GarganoP, NicosiaA, LongoV, AloiN, RomancinoDP, PaternaA, RaoE, RaccostaS, NotoR, SalamoneM, DeiddaI, CostaS, Di SanoC, ZampiG, MorsbachS, LandfesterK, ColomboP, WeiM, BergeseP, TouzetN, MannoM, Di SchiaviE, BongiovanniA. Extracellular vesicles from the microalga Tetraselmis chuii are biocompatible and exhibit unique bone tropism along with antioxidant and anti-inflammatory properties. Communications Biology, 2024, 7 1): 941

[5]

AdamoG, PicciottoS, GarganoP, PaternaA, RaccostaS, RaoE, RomancinoDP, GhersiG, MannoM, SalamoneM, BongiovanniA. DetectEV : A functional enzymatic assay to assess integrity and bioactivity of extracellular vesicles. Journal of Extracellular Vesicles, 2025, 14(1) e70030

[6]

AizpuruA, Gonzalez-SanchezA. Traditional and new trend strategies to enhance pigment contents in microalgae. World J Microbiol Biotechnol, 2024, 40 9): 272

[7]

AkolpogluMB, DoganNO, BozuyukU, CeylanH, KizilelS, SittiM. High-Yield Production of Biohybrid Microalgae for On-Demand Cargo Delivery. Advanced Science, 2020, 7(16): 2001256

[8]

AnX, ZhongD, WuW, WangR, YangL, JiangQ, ZhouM, XuX. Doxorubicin-Loaded Microalgal Delivery System for Combined Chemotherapy and Enhanced Photodynamic Therapy of Osteosarcoma. ACS Appl Mater Interfaces, 2024, 16(6): 6868-6878

[9]

AndradeKAM, LauritanoC, RomanoG, IanoraA. Marine Microalgae with Anti-Cancer Properties. Mar Drugs, 2018, 16(5): 165

[10]

AwMS, SimovicS, YuY, Addai-MensahJ, LosicD. Porous silica microshells from diatoms as biocarrier for drug delivery applications. Powder Technol, 2012, 223: 52-58

[11]

BalasubramanianS, YuK, MeyerAS, KaranaE, Aubin-TamM. Bioprinting of Regenerative Photosynthetic Living Materials. Adv Func Mater, 2021, 31(31): 2011162

[12]

BarkerHE, PagetJTE, KhanAA, HarringtonKJ. The tumour microenvironment after radiotherapy : mechanisms of resistance and recurrence (vol 15, pg 409, 2015). Nat Rev Cancer, 2015, 15(7): 409-425

[13]

Bazylinski, D. A., Williams, T. J., Lefevre, C. T., Berg, R. J., Zhang, C. L., Bowser, S. S., Dean, A. J., & Beveridge, T. J. (2013). Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria [Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.]. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 3), 801–808. https://doi.org/10.1099/ijs.0.038927-0

[14]

BoalweCHA, PatelK, SinghM. Doxorubicin liposomes as an investigative model to study the skin permeation of nanocarriers. Int J Pharm, 2015, 489(1–2): 106-116

[15]

BouyahyaA, BakrimS, ChamkhiI, TahaD, OmariNE, MneyiyNE, HachlafiNE, El-ShazlyM, KhalidA, AbdallaAN, GohKW, MingLC, GohBH, AannizT. Bioactive substances of cyanobacteria and microalgae : Sources, metabolism, and anticancer mechanism insights. Biomed Pharmacother, 2024, 170 ArticleID: 115989

[16]

CastilloA, FinimundyTC, HelenoSA, RodriguesP, FernandesFA, PereiraS, LoresM, BarrosL, Garcia-JaresC. The generally recognized as safe ( GRAS ) microalgae Haematococcus pluvialis ( wet ) as a multifunctional additive for coloring and improving the organoleptic and functional properties of foods. Food Funct, 2023, 14(13): 6023-6035

[17]

CastroV, OliveiraR, DiasACP. Microalgae and cyanobacteria as sources of bioactive compounds for cosmetic applications : A systematic review. Algal Research-Biomass Biofuels and Bioproducts, 2023, 76, ArticleID: 103287

[18]

Castro, C., Coutinho, F., Iglesias, P., Oliva-Teles, A. & Couto, A. (2020). Chlorella sp. and Nannochloropsis sp. Inclusion in Plant-Based Diets Modulate the Intestine and Liver Antioxidant Mechanisms of European Sea Bass Juveniles. Fronters in Veterinary Science, 17(7), 607575. https://doi.org/10.3389/fvets.2020.607575

[19]

Centeno-CerdasC, Jarquin-CorderoM, ChavezMN, HopfnerU, HolmesC, SchmaussD, MachensH, NickelsenJ, EganaJT. Development of photosynthetic sutures for the local delivery of oxygen and recombinant growth factors in wounds. Acta Biomater, 2018, 81: 184-194

[20]

ChaiR, YuL, DongC, YinY, WangS, ChenY, ZhangQ. Oxygen-evolving photosynthetic cyanobacteria for 2D bismuthene radiosensitizer-enhanced cancer radiotherapy. Bioactive Materials, 2022, 17: 276-288

[21]

ChavezMN, SchenckTL, HopfnerU, Centeno-CerdasC, Somlai-SchweigerI, SchwarzC, MachensH, HeikenwalderM, BonoMR, AllendeML, NickelsenJ, EganaJT. Towards autotrophic tissue engineering : Photosynthetic gene therapy for regeneration. Biomaterials, 2016, 75: 25-36

[22]

ChavezMN, FuchsB, MoellhoffN, HofmannD, ZhangL, SelaoTT, GiuntaRE, EganaJT, NickelsenJ, SchenckTL. Use of photosynthetic transgenic cyanobacteria to promote lymphangiogenesis in scaffolds for dermal regeneration. Acta Biomater, 2021, 126: 132-143

[23]

ChenH, GuoY, ZhangZ, MaoW, ShenC, XiongW, YaoY, ZhaoX, HuY, ZouZ, WuJ. Symbiotic Algae - Bacteria Dressing for Producing Hydrogen to Accelerate Diabetic Wound Healing. Nano Lett, 2022, 22(1): 229-237

[24]

ChoiHI, KimJYH, KwakHS, SungYJ, SimSJ. Quantitative analysis of the chemotaxis of a green alga, Chlamydomonas reinhardtii, to bicarbonate using diffusion-based microfluidic device. Biomicrofluidics, 2016, 10(1) 014121

[25]

ChoiH, KimB, JeongSH, KimTY, KimD, OhY, HahnSK. Microalgae-Based Biohybrid Microrobot for Accelerated Diabetic Wound Healing. Small, 2023, 19 1): 2204617

[26]

ChuG, SohrabiF, TimonenJVI, RojasOJ. Dispersing swimming microalgae in self-assembled nanocellulose suspension : Unveiling living colloid dynamics in cholesteric liquid crystals. J Colloid Interface Sci, 2022, 622: 978-985

[27]

CiccoSR, VonaD, LeoneG, De GiglioE, BonifacioMA, CometaS, FioreS, PalumboF, RagniR, FarinolaGM. In vivo functionalization of diatom biosilica with sodium alendronate as osteoactive material. Materials Science and Engineering C-Materials for Biological Applications, 2019, 104 ArticleID: 109897

[28]

CohenJE, GoldstoneAB, PaulsenMJ, ShudoY, SteeleAN, EdwardsBB, PatelJB, MacArthurJW, HopkinsMS, BurnettCE, JaatinenKJ, ThakoreAD, FarryJM, TruongVN, BourdillonAT, StapletonLM, EskandariA, FairmanAS, HiesingerW, EsipovaTV, PatrickWL, JiK, ShizuruJA, WooYJ. An innovative biologic system for photon-powered myocardium in the ischemic heart. Sci Adv, 2017, 3(6) e1603078

[29]

Corrales-OrovioR, CarvajalF, HolmesC, MirandaM, Gonzalez-ItierS, CardenasC, VeraC, SchenckTL, EganaJT. Development of a photosynthetic hydrogel as potential wound dressing for the local delivery of oxygen and bioactive molecules. Acta Biomater, 2023, 155: 154-166

[30]

Cui, J., Eddaoudi, A., Purton, S., & Jayasinghe, S. N. (2024). Bio-Sprayed / Threaded Microalgae Remain Viable and Indistinguishable from Controls. 20(42), 2402611. Small https://doi.org/10.1002/smll.202402611

[31]

DalgicAD, AtilaD, KaratasA, TezcanerA, KeskinD. Diatom shell incorporated PHBV / PCL-pullulan co-electrospun scaffold for bone tissue engineering. Materials Science and Engineering C-Materials for Biological Applications, 2019, 100: 735-746

[32]

de AndradeAF, PortoALF, BezerraRP. Photosynthetic microorganisms and their bioactive molecules as new product to healing wounds. Appl Microbiol Biotechnol, 2022, 106 2): 497-504

[33]

Delalat, B., Sheppard, V. C., Rasi, G. S., Rao, S., Prestidge, C. A., McPhee, G., Rogers, M. L., Donoghue, J. F., Pillay, V., Johns, T. G., Kroger, N., & Voelcker, N. H. (2015). Targeted drug delivery using genetically engineered diatom biosilica [Journal Article; Research Support, Non-U.S. Gov't]. Nature Communications, 6, 8791. https://doi.org/10.1038/ncomms9791

[34]

FieldsFJ, LejzerowiczF, SchroederD, NgoiSM, TranM, McDonaldD, JiangL, ChangJT, KnightR, MayfieldS. Effects of the microalgae Chlamydomonas on gastrointestinal health. Journal of Functional Foods, 2020, 65 ArticleID: 103738

[35]

GaoC, KwongCHT, WangQ, KamH, XieB, LeeSM, ChenG, WangR. Conjugation of Macrophage-Mimetic Microalgae and Liposome for Antitumor Sonodynamic Immunotherapy via Hypoxia Alleviation and Autophagy Inhibition. ACS Nano, 2023, 17(4): 4034-4049

[36]

GaoX, WangH, ChenK, GuoY, ZhouJ, XieW. Toxicological and Pharmacological Activities, and Potential Medical Applications, of Marine Algal Toxins. Int J Mol Sci, 2024, 25(17): 9194

[37]

GeyerVF, JuelicherF, HowardJ, FriedrichBM. Cell-body rocking is a dominant mechanism for flagellar synchronization in a swimming alga. Proc Natl Acad Sci USA, 2013, 110(45): 18058-18063

[38]

GnanamoorthyP, AnandhanS, PrabuVA. Natural nanoporous silica frustules from marine diatom as a biocarrier for drug delivery. J Porous Mater, 2014, 21: 789-796

[39]

GongDe, CeliN, ZhangD, CaiJ. Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery. ACS Appl Mater Interfaces, 2022, 14(5): 6320-6330

[40]

GotovtsevP. Microbial Cells as a Microrobots : From Drug Delivery to Advanced Biosensors. Biomimetics, 2023, 8(1): 109

[41]

GoudaM, TaddaMA, ZhaoY, FarmanullahF, ChuB, LiX, HeY. Microalgae Bioactive Carbohydrates as a Novel Sustainable and Eco-Friendly Source of Prebiotics : Emerging Health Functionality and Recent Technologies for Extraction and Detection. Front Nutr, 2022, 15(9) ArticleID: 806692

[42]

HaederD, HemmersbachR. Euglena, a Gravitactic Flagellate of Multiple Usages. Life-Basel, 2022, 12 10): 1522

[43]

HanX, JuLS, IrudayarajJ. Oxygenated Wound Dressings for Hypoxia Mitigation and Enhanced Wound Healing. Mol Pharm, 2023, 20(7): 3338-3355

[44]

HeY, ChangQ, LuF. Oxygen-releasing biomaterials for chronic wounds breathing : From theoretical mechanism to application prospect. Materials Today Bio, 2023, 20 100687

[45]

Hernandez-UrceraJ, RomeroA, CruzP, VasconcelosV, FiguerasA, NovoaB, RodriguezF. Screening of Microalgae for Bioactivity with Antiviral, Antibacterial. Anti-Inflammatory and Anti-Cancer Assays Biology-Basel, 2024, 13(4): 255

[46]

HuQ, WangY, WangC, YanX. Comparative Proteome Profiling of Extracellular Vesicles from Three Growth Phases of Haematococcus pluvialis under High Light and Sodium Acetate Stresses. Int J Mol Sci, 2024, 25(10): 5421

[47]

HuaS, LiuS, ZhouL, WangL, LiuC, WangH, ChenX, ShanT, ZhouM. Natural floating biosystem for alcohol-induced diseases. Matter, 2024, 7(5): 1879-1894

[48]

HuangH, LangY, ZhouM. A comprehensive review on medical applications of microalgae. Algal Research-Biomass Biofuels and Bioproducts, 2024, 80, ArticleID: 103504

[49]

IsegawaY. Activation of Immune and Antiviral Effects by Euglena Extracts : A Review. Foods, 2023, 12(24): 4438

[50]

IshikawaT, PedleyTJ. 50-year history and perspective on biomechanics of swimming microorganisms : Part II. Collective behaviours. J Biomech, 2023, 160, ArticleID: 111802

[51]

JiaJ, LiuJ, ShiW, WuC, LiuX, NaJ, JinZ, XuC, ZhangQ, ZhaoY, LiaoY. Microalgae-loaded biocompatible alginate microspheres for tissue repair. Int J Biol Macromol, 2024, 271 ArticleID: 132534

[52]

JinJ, BhujwallaZM. Biomimetic Nanoparticles Camouflaged in Cancer Cell Membranes and Their Applications in Cancer Theranostics. Front Oncol, 2020, 9: 1560

[53]

JinN, WuJ, YeS, XueJ, MengT, HuL, JiangS, XuH, YuY, HuD, ZhangG. Injectable Dynamic ROS-Responsive COF-Modified Microalgae Gels for In Vivo bFGF Delivery to Treat Diabetic Wounds. ACS Appl Mater Interfaces, 2024, 16(15): 18608-18626

[54]

KangY, XuL, DongJ, YuanX, YeJ, FanY, LiuB, XieJ, JiX. Programmed microalgae-gel promotes chronic wound healing in diabetes. Nat Commun, 2024, 15(1): 1042

[55]

KaramanidouT, BourganisV, KammonaO, KiparissidesC. Lipid-based nanocarriers for the oral administration of biopharmaceutics. Nanomedicine, 2016, 11(22): 3009-3032

[56]

KawanoT, NaitoJ, NishiokaM, NishidaN, TakahashiM, KashiwagiS, SuginoT, WatanabeY. Effect of Food Containing Paramylon Derived from Euglena gracilis EOD-1 on Fatigue in Healthy Adults: A Randomized, Double-Blind, Placebo-Controlled. Parallel-Group Trial Nutrients, 2020, 12(10): 3098

[57]

KongF, YamaokaY, OhamaT, LeeY, Li-BeissonY. Molecular Genetic Tools and Emerging Synthetic Biology Strategies to Increase Cellular Oil Content in Chlamydomonas reinhardtii. Plant Cell Physiol, 2019, 60(6): 1184-1196

[58]

KongF, BlotC, LiuK, KimM, Li-BeissonY. Advances in algal lipid metabolism and their use to improve oil content. Curr Opin Biotechnol, 2024, 87 ArticleID: 103130

[59]

KrujatzF, LodeA, BrueggemeierS, SchuetzK, KramerJ, BleyT, GelinskyM, WeberJ. Green bioprinting : Viability and growth analysis of microalgae immobilized in 3D-plotted hydrogels versus suspension cultures. Eng Life Sci, 2015, 15(7): 678-688

[60]

LeT, BonaniW, SperanzaG, SglavoV, CeccatoR, ManiglioD, MottaA, MigliaresiC. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering. Materials Science & Engineering C-Materials for Biological Applications, 2016, 59: 471-479

[61]

LeeY, LinS. Chitosan / PVA Hetero-Composite Hydrogel Containing Antimicrobials, Perfluorocarbon Nanoemulsions, and Growth Factor-Loaded Nanoparticles as a Multifunctional Dressing for Diabetic Wound Healing : Synthesis, Characterization, and In Vitro / In Vivo Evaluation. Pharmaceutics, 2022, 14(3): 537

[62]

LeeC, LimK, KimSS, ThienLX, LeeES, OhKT, ChoiH, YounYS. Chlorella-gold nanorods hydrogels generating photosynthesis-derived oxygen and mild heat for the treatment of hypoxic breast cancer. J Control Release, 2019, 294: 77-90

[63]

Lee, J., An, S., Kim, K. B., Heo, J., Cho, D., Oh, H., Kim, H., & Bae, S. (2016). Extract of Ettlia sp . YC001 Exerts Photoprotective Effects against UVB Irradiation in Normal Human Dermal Fibroblast (vol 26, pg 775, 2016). Journal of Microbiology and Biotechnology, 26(6), 1162. https://doi.org/10.4014/jmb.2016.2606.1162

[64]

LiN, WangP, WangS, WangC, ZhouH, KapurS, ZhangJ, SongY. Electrostatic charges on microalgae surface : Mechanism and applications. J Environ Chem Eng, 2022, 10(3) ArticleID: 107516

[65]

LiL, FuJ, YeJ, LiuL, SunZ, WangH, TanS, ZhenM, WangC, BaiC. Developing Hypoxia-Sensitive System via Designing Tumor - Targeted Fullerene-Based Photosensitizer for Multimodal Therapy of Deep Tumor. Adv Mater, 2024, 36 23): 2310875

[66]

LiZ, CheY, ChenM, HuJ, HeP, SunX, WuX, YaoY, ZhengH, LiuG, YanX. Multifunctional Spirulina-hybrid helical microswimmers : Imaging and photothermal efficacy enabled by intracellular gold deposition. Chem Eng J, 2024, 487 ArticleID: 150584

[67]

LiangF, AnX, WangR, WuW, YangL, ZhengY, JiangQ, XuX, ZhongD, ZhouM. Microalgae-based drug delivery system for tumor microenvironment photo-modulating and synergistic chemo-photodynamic therapy of osteosarcoma. Engineered Regeneration, 2024, 5(2): 199-209

[68]

LiangF, ZhaoC, ZhengY, ZhongD, ZhouM. Microalgae-Based Dual Drug Delivery System with Enhanced Articular Cavity Retention for Osteoarthritis Treatment. Adv Func Mater, 2024, 34(30): 2401055

[69]

LiangF, ZhengY, ZhaoC, LiL, HuY, WangC, WangR, FengT, LiuX, CuiJ, ZhongD, ZhouM. Microalgae-Derived Extracellular Vesicles Synergize with Herbal Hydrogel for Energy Homeostasis in Osteoarthritis Treatment. ACS Nano, 2025, 19(8): 8040-8057

[70]

LiuJ, SunZ, GerkenH, LiuZ, JiangY, ChenF. Chlorella zofingiensis as an Alternative Microalgal Producer of Astaxanthin : Biology and Industrial Potential. Mar Drugs, 2014, 12(6): 3487-3515

[71]

LiuJ, YangT, ZhangH, WengL, PengX, LiuT, ChengC, ZhangY, ChenX. Intelligent nanoreactor coupling tumor microenvironment manipulation and H2O2-dependent photothermal-chemodynamic therapy for accurate treatment of primary and metastatic tumors. Bioactive Materials, 2024, 34: 354-365

[72]

LuoJ, WangH, ChenJ, WeiX, FengJ, ZhangY, ZhouY. The Application of Drugs and Nano-Therapies Targeting Immune Cells in Hypoxic Inflammation. Int J Nanomed, 2024, 19: 3441-3459

[73]

Luo, G., Liu, H., Yang, S., Sun, Z., Sun, L., & Wang, L. (2024a). Manufacturing processes , additional nutritional value and versatile food applications of fresh microalgae Spirulina. Frontiers in Nutrition, 11 https://doi.org/10.3389/fnut.2024.1455553

[74]

MaJ, FangY, YuH, YiJ, MaY, LeiP, YangQ, JinL, WuW, LiH, SunD. Recent Advances in Living Algae Seeding Wound Dressing : Focusing on Diabetic Chronic Wound Healing. Adv Func Mater, 2024, 34(2): 2308387

[75]

MaasAL, CarterSL, WileytoEP, MillerJ, YuanM, YuG, DurhamAC, BuschTM. Tumor Vascular Microenvironment Determines Responsiveness to Photodynamic Therapy. Can Res, 2012, 72(8): 2079-2088

[76]

MaherS, KumeriaT, WangY, KaurG, FathallaD, FetihG, SantosA, HabibF, EvdokiouA, LosicD. From The Mine to Cancer Therapy : Natural and Biodegradable Theranostic Silicon Nanocarriers from Diatoms for Sustained Delivery of Chemotherapeutics. Adv Healthcare Mater, 2016, 5(20): 2667-2678

[77]

MalikS, HagopianJ, MohiteS, CaoLT, ElsLS, GiannakopoulosS, BeckettR, LeungC, RuizJ, CruzM, ParkerB. Robotic Extrusion of Algae-Laden Hydrogels for Large-Scale Applications. Global Chall, 2020, 4(1): 1900064

[78]

Maria-HormigosR, Jurado-SanchezB, EscarpaA. Biocompatible micromotors for biosensing, 414, 7035–7049. Anal Bioanal Chem, 2022

[79]

Marquez-EscobarVA, Banuelos-HernandezB, Rosales-MendozaS. Expression of a Zika virus antigen in microalgae : Towards mucosal vaccine development. J Biotechnol, 2018, 282: 86-91

[80]

Maucourt, K., Agarwal, M., René, B., & Fermandjian, S. (2002). Use of Chlamydomonas reinhardtii mutants for anticancer drug screening. Biochemical Pharmacology, 64(7), 1125–1131. https://doi.org/10.1016/S0006-2952(02)01256-X

[81]

MengX, LiuZ, YangY, LiJ, RanZ, ZhuY, FuJ, HeY, HaoY. Engineered Microcystis aerugiosa Hydrogel as an Anti - Tumor Therapeutic by Augmenting Tumor Immunogenicity and Immune Responses. Adv Func Mater, 2024, 34(7): 2305915

[82]

MiguelSP, RibeiroMP, OteroA, CoutinhoP. Application of microalgae and microalgal bioactive compounds in skin regeneration. Algal Research-Biomass Biofuels and Bioproducts, 2021, 58, ArticleID: 102395

[83]

Morita, M., Watanabe, Y., & Saiki, H. (2000). High photosynthetic productivity of green microalga Chlorella sorokiniana. Applied Biochemistry and Biotechnology, 87(3), 203–218. https://doi.org/10.1385/ABAB:87:3:203

[84]

MuraliN, DasSB, YadavS, RainuSK, SinghN, BetalS. Advanced Biomimetic and Biohybrid Magnetic Micro / Nano-Machines. Advanced Materials Technologies, 2024, 9(19): 2400239

[85]

NakashimaA, SasakiK, SasakiD, YasudaK, SuzukiK, KondoA. The alga Euglena gracilis stimulates Faecalibacterium in the gut and contributes to increased defecation. Sci Rep, 2021, 11(1): 1074

[86]

NguyenPQ, CourchesneND, Duraj-ThatteA, PraveschotinuntP, JoshiNS. Engineered Living Materials : Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials. Adv Mater, 2018, 30(19): 1704847

[87]

NiuT, ZhouJ, WangF, XuanR, ChenJ, WuW, ChenH. Safety assessment of astaxanthin from Haematococcus pluvialis : Acute toxicity, genotoxicity, distribution and repeat-dose toxicity studies in gestation mice. Regul Toxicol Pharmacol, 2020, 115 ArticleID: 104695

[88]

Norton, T. A., Melkonian, M., & Andersen, R. A. (1996). Algal biodiversity. Phycologia, 35(4), 308–326. https://doi.org/10.2216/i0031-8884-35-4-308.1

[89]

NovichkovaE, NayakS, BoussibaS, GopasJ, ZilbergD, Khozin-GoldbergI. Dietary Application of the Microalga Lobosphaera incisa P127 Reduces Severity of Intestinal Inflammation, Modulates Gut-Associated Gene Expression, and Microbiome in the Zebrafish Model of IBD. Molecular Nutrition Food Research, 2023, 67(6) ArticleID: e2200253

[90]

OcchipintiPS, RussoN, FotiP, ZingaleIM, PinoA, RomeoFV, RandazzoCL, CaggiaC. Current challenges of microalgae applications : exploiting the potential of non-conventional microalgae species. J Sci Food Agric, 2024, 104 7): 3823-3833

[91]

OdaH, ShimizuN, MorimotoY, TakeuchiS. Harnessing the Propulsive Force of Microalgae with Microtrap to Drive Micromachines, 20(44), 2402923. Small, 2024

[92]

OhJ, AmmuS, VriendVD, KiefferR, KleinerFH, BalasubramanianS, KaranaE, MasaniaK, Aubin-TamM. Growth, Distribution, and Photosynthesis of Chlamydomonas Reinhardtii in 3D Hydrogels, 36(2), 2305505. Adv Mater, 2023

[93]

OzasaK, WonJ, SongS, TamakiS, IshikawaT, MaedaM. Temporal change of photophobic step-up responses of Euglena gracilis investigated through motion analysis. PLoS ONE, 2017, 12(2) e0172813

[94]

PandaA, ReddyAS, VenkateswarluS, YoonM. Bio-inspired self-propelled diatom micromotor by catalytic decomposition of H2O2 under low fuel concentration. Nanoscale, 2018, 10 34): 16268-16277

[95]

PicciottoS, BaroneME, FierliD, AranyosA, AdamoG, BozicD, RomancinoDP, StanlyC, ParkesR, MorsbachS, RaccostaS, PaganiniC, CusimanoA, MartoranaV, NotoR, CarrottaR, LibrizziF, PalmieroUC, SantonicolaP, IglicA, GaiM, CorcueraL, KisslingerA, Di SchiaviE, LandfesterK, LiguoriGL, Kralj-IglicV, ArosioP, PocsfalviG, MannoM, TouzetN, BongiovanniA. Isolation of extracellular vesicles from microalgae : towards the production of sustainable and natural nanocarriers of bioactive compounds. Biomaterials Science, 2021, 9(8): 2917-2930

[96]

Qiao, Y., Yang, F., Xie, T., Du, Z., Zhong, D., Qi, Y., Li, Y., Li, W., Lu, Z., Rao, J., Sun, Y., & Zhou, M. (2020). Engineered algae : A novel oxygen-generating system for effective treatment of hypoxic cancer. Science Advances, 6(21), eaba5996. https://doi.org/10.1126/sciadv.aba5996

[97]

RaeesS, UllahF, JavedF, AkilHM, KhanMJ, SafdarM, DinIU, AlotaibiMA, AlharthiAI, BakhtMA, AhmadA, NassarAA. Classification, processing, and applications of bioink and 3D bioprinting : A detailed review. Int J Biol Macromol, 2023, 232 ArticleID: 123476

[98]

Ramos-VegaA, AnguloC, Banuelos-HernandezB, Monreal-EscalanteE. Microalgae-made vaccines against infectious diseases. Algal Research-Biomass Biofuels and Bioproducts, 2021, 58, ArticleID: 102408

[99]

RenG, ZhouX, LongR, XieM, KankalaRK, WangS, ZhangYS, LiuY. Biomedical applications of magnetosomes : State of the art and perspectives. Bioactive Materials, 2023, 28: 27-49

[100]

Rojas-VillaltaD, Rojas-RodriguezD, Villanueva-IlamaM, Guillen-WatsonR, Murillo-VegaF, Gomez-EspinozaO, Nunez-MonteroK. Exploring Extremotolerant and Extremophilic Microalgae : New Frontiers in Sustainable Biotechnological Applications. Biology-Basel, 2024, 13(9): 712

[101]

SalamMA, KorkmazN, CycilLM, HasanF. Isolation, microscopic and magnetotactic characterization of Magnetospirillum moscoviense MS-24 from Banjosa Lake. Pakistan Biotechnology Letters, 2023, 45(8): 967-979

[102]

SantomauroG, SinghAV, ParkB, MohammadrahimiM, ErkocP, GoeringE, SchuetzG, SittiM, BillJ. Incorporation of Terbium into a Microalga Leads to Magnetotactic Swimmers. Advanced Biosystems, 2018, 2(12): 1800039

[103]

SasirekhaR, SheenaTS, DeepikaMS, SanthanamP, TownleyHE, JeganathanK, KumarSD, PremkumarK. Surface engineered Amphora subtropica frustules using chitosan as a drug delivery platform for anticancer therapy. Materials Science and Engineering C-Materials for Biological Applications, 2019, 94: 56-64

[104]

SathasivamR, RadhakrishnanR, HashemA, AllahEFA. Microalgae metabolites : A rich source for food and medicine. Saudi Journal of Biological Sciences, 2019, 26(4): 709-722

[105]

Shah, M. A. R., Zhu, F., Cui, Y., Hu, X., Chen, H., Kayani, S., & Huo, S. (2024). Mechanistic insights into the nutritional and therapeutic potential of Spirulina ( Arthrospira ) spp .: Challenges and opportunities. Trends in Food Science & Technology, 151, 104648. https://doi.org/10.1016/j.tifs.2024.104648

[106]

ShahriarSMS, AndrabiSM, IslamF, AnJM, SchindlerSJ, MatisMP, LeeDY, LeeY. Next-Generation 3D Scaffolds for Nano-Based Chemotherapeutics Delivery and Cancer Treatment. Pharmaceutics, 2022, 14(12): 2712

[107]

ShchelikIS, MolinoJVD, GademannK. Biohybrid microswimmers against bacterial infections. Acta Biomater, 2021, 136: 99-110

[108]

SongY, SongZ, WuJ, LiZ, GuX, WangC, WangL, LiangJ. Focus on the performance enhancement of micro / nanomotor-based biosensors. Biosens Bioelectron, 2023, 241 ArticleID: 115686

[109]

StrizekA, PribylP, LukesM, GrivalskyT, KopeckyJ, GalicaT, HrouzekP. Hibberdia magna ( Chrysophyceae ): a promising freshwater fucoxanthin and polyunsaturated fatty acid producer. Microb Cell Fact, 2023, 22(1): 73

[110]

SunX, ZhangM, LiuJ, HuiG, ChenX, FengC. The Art of Exploring Diatom Biosilica Biomaterials : From Biofabrication Perspective. Advanced Science, 2024, 11(6) ArticleID: e2304695

[111]

SunH, GongQ, FanY, WangY, WangJ, ZhuC, MouH, YangS, LiuJ. Unlocking 3D printing technology for microalgal production and application. Advanced Biotechnology, 2024, 2: 36

[112]

TambatVS, PatelAK, SinghaniaRR, VadraleAP, TiwariA, ChenC, DongC. Sustainable mixotrophic microalgae refinery of astaxanthin and lipid from Chlorella zofingiensis. Biores Technol, 2023, 387 ArticleID: 129635

[113]

TheryC, WitwerKW, AikawaE, AlcarazMJ, AndersonJD, AndriantsitohainaR, AntoniouA, ArabT, ArcherF, Atkin-SmithGK, et al.. Minimal information for studies of extracellular vesicles 2018 ( MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7 1): 1535750

[114]

UekiN, IdeT, MochijiS, KobayashiY, TokutsuR, OhnishiN, YamaguchiK, ShigenobuS, TanakaK, MinagawaJ, HisaboriT, HironoM, WakabayashiK. Eyespot-dependent determination of the phototactic sign in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA, 2016, 113(19): 5299-5304

[115]

UmaVS, UsmaniZ, SharmaM, DiwanD, SharmaM, GuoM, TuohyMG, MakatsorisC, ZhaoX, ThakurVK, GuptaVK. Valorisation of algal biomass to value-added metabolites : emerging trends and opportunities. Phytochem Rev, 2023, 22(4): 1015-1040

[116]

UrsoM, UssiaM, PumeraM. Smart micro- and nanorobots for water purification [Journal Article; Review]. Nat Rev Bioeng, 2023, 1(4): 236-251

[117]

VarshneyP, MikulicP, VonshakA, BeardallJ, WangikarPP. Extremophilic micro-algae and their potential contribution in biotechnology. Biores Technol, 2015, 184: 363-372

[118]

WangQ, ZhangR, LuM, YouG, WangY, ChenG, ZhaoC, WangZ, SongX, WuY, ZhaoL, ZhouH. Bioinspired Polydopamine-Coated Hemoglobin as Potential Oxygen Carrier with Antioxidant Properties. Biomacromol, 2017, 18(4): 1333-1341

[119]

WangX, CaiJ, SunL, ZhangS, GongDe, LiX, YueS, FengL, ZhangD. Facile Fabrication of Magnetic Microrobots Based on Spirulina Templates for Targeted Delivery and Synergistic Chemo-Photothermal Therapy. ACS Appl Mater Interfaces, 2019, 11(5): 4745-4756

[120]

WangJ, SuQ, LvQ, CaiB, XiaohalatiX, WangG, WangZ, WangL. Oxygen-Generating Cyanobacteria Powered by Upconversion-Nanoparticles-Converted Near-Infrared Light for Ischemic Stroke Treatment. Nano Lett, 2021, 21(11): 4654-4665

[121]

WangX, LiuT, ChenM, LiangQ, JiangJ, ChenL, FanK, ZhangJ, GaoL. An Erythrocyte-Templated Iron Single-Atom Nanozyme for Wound Healing. Advanced Science, 2024, 11(6) ArticleID: e2307844

[122]

WangZ, YangZ, LiS, KwongCHT, ZhangD, WeiJ, GaoC, ZhangQ, WangR. Light-Directed Microalgae Micromotor with Supramolecular Backpacks for Photodynamic Therapy. Adv Func Mater, 2024, 35 5): 2411070

[123]

Wang, X., Jiao, N., Tung, S., & Liu, L. (2018). Locomotion of Microstructures Driven by Algae Cells. 2018 International Conference On Manipulation, Automation and Robotics at Small Scales (Marss)

[124]

Wang, X., Yang, C., Yu, Y., & Zhao, Y. (2022). In Situ 3D Bioprinting Living Photosynthetic Scaffolds for Autotrophic Wound Healing. Research, (20)2022, 9794745. https://doi.org/10.34133/2022/9794745

[125]

Wang, X., Jia, J., Niu, M., Li, W., & Zhao, Y. (2023). Living Chinese Herbal Scaffolds from Microfluidic Bioprinting for Wound Healing. Research, 6, 0138 https://doi.org/10.34133/research.0138

[126]

WeibelDB, GarsteckiP, RyanD, DiluzioWR, MayerM, SetoJE, WhitesidesGM. Microoxen : Microorganisms to move microscale loads. Proc Natl Acad Sci USA, 2005, 102(34): 11963-11967

[127]

WilliamsonE, RossIL, WallBT, HankamerB. Microalgae : potential novel protein for sustainable human nutrition. Trends Plant Sci, 2024, 29(3): 370-382

[128]

WuQ, MaY, ZhangL, HanJ, LeiY, LeY, HuangC, KanJ, FuC. Extraction, functionality, and applications of Chlorella pyrenoidosa protein/ peptide. Current Research in Food Science, 2023, 7 100621

[129]

XieS, JiaoN, TungS, LiuL. Controlled regular locomotion of algae cell microrobots. Biomed Microdevice, 2016, 18(3): 47

[130]

XieL, PangX, YanX, DaiQ, LinH, YeJ, ChengY, ZhaoQ, MaX, ZhangX, LiuG, ChenX. Photoacoustic Imaging-Trackable Magnetic Microswimmers for Pathogenic Bacterial Infection Treatment. ACS Nano, 2020, 14(3): 2880-2893

[131]

XieS, QinL, LiG, JiaoN. Robotized algal cells and their multiple functions [Journal Article]. Soft Matter, 2021, 17(11): 3047-3054

[132]

XinH, ZhaoN, WangY, ZhaoX, PanT, ShiY, LiB. Optically Controlled Living Micromotors for the Manipulation and Disruption of Biological Targets. Nano Lett, 2020, 20(10): 7177-7185

[133]

XingX, LiuC, ZhengL. Preparation of photo-crosslinked microalgae-carboxymethyl chitosan composite hydrogels for enhanced wound healing. Carbohyd Polym, 2025, 348 ArticleID: 122803

[134]

XuH, Medina-SanchezM, MagdanzV, SchwarzL, HebenstreitF, SchmidtOG. Sperm-Hybrid Micromotor for Targeted Drug Delivery. ACS Nano, 2018, 12(1): 327-337

[135]

YaakobZ, AliE, ZainalA, MohamadM, TakriffMS. An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki, 2014, 21(1): 6

[136]

YangR, MaL, PengH, ZhaiY, ZhouG, ZhangL, ZhuoL, WuW, GuoY, HanJ, JingL, ZhouX, MaX, LiY. Microalgae-based bacteria for oral treatment of ASD through enhanced intestinal colonization and homeostasis. Theranostics, 2025, 15(6): 2139-2158

[137]

YoungLY, MitchellR. Negative chemotaxis of marine bacteria to toxic chemicals [Journal Article]. Appl Microbiol, 1973, 25(6): 972-975

[138]

ZengL, PengQ, LiQ, BiY, KongF, WangZ, TanS. Synthesis, characterization, biological activity, and in vitro digestion of selenium nanoparticles stabilized by Antarctic ice microalgae polypeptide. Bioorg Chem, 2023, 141 ArticleID: 106884

[139]

ZengY, GuQ, LiD, LiA, LiuR, LiangJ, LiuJ. Immunocyte membrane-derived biomimetic nano-drug delivery system : a pioneering platform for tumour immunotherapy. Acta Pharmacol Sin, 2024, 45(12): 2455-2473

[140]

ZhangF, LiZ, YinL, ZhangQ, AskarinamN, Mundaca-UribeR, TehraniF, KarshalevE, GaoW, ZhangL, WangJ. ACE2 Receptor-Modified Algae-Based Microrobot for Removal of SARS-CoV-2 in Wastewater. J Am Chem Soc, 2021, 143(31): 12194-12201

[141]

ZhangD, ZhongD, OuyangJ, HeJ, QiY, ChenW, ZhangX, TaoW, ZhouM. Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat Commun, 2022, 13(1): 1413

[142]

ZhangF, ZhuangJ, LiZ, GongH, de AvilaBE, DuanY, ZhangQ, ZhouJ, YinL, KarshalevE, GaoW, NizetV, FangRH, ZhangL, WangJ. Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia. Nat Mater, 2022, 21(11): 1324

[143]

ZhangD, HeJ, CuiJ, WangR, TangZ, YuH, ZhouM. Oral Microalgae-Nano Integrated System against Radiation-Induced Injury. ACS Nano, 2023, 17(11): 10560-10576

[144]

ZhangC, HanZ, ChenK, WangY, BaoP, JiP, YanX, RaoZ, ZengX, ZhangX. In Situ Formed Microalgae-Integrated Living Hydrogel for Enhanced Tumor Starvation Therapy and Immunotherapy through Photosynthetic Oxygenation. Nano Lett, 2024, 24(12): 3801-3810

[145]

ZhangC, HanZ, ChenK, WangY, YanX, ZhangX. Polydopamine-armed microalgal oxygenerator targeting the hypoxia-adenosine axis to boost cancer photothermal immunotherapy. Mater Today, 2024, 75: 71-84

[146]

ZhangF, LiZ, ChenC, LuanH, FangRH, ZhangL, WangJ. Biohybrid Microalgae Robots : Design, Fabrication, Materials, and Applications. Adv Mater, 2024, 36(3) ArticleID: e2303714

[147]

ZhangQ, ZengY, ZhaoY, PengX, RenE, LiuG. Bio-Hybrid Magnetic Robots : From Bioengineering to Targeted Therapy. Bioengineering-Basel, 2024, 11 4): 311

[148]

ZhangT, LiuD, ZhangY, ChenL, ZhangW, SunT. Biomedical engineering utilizing living photosynthetic cyanobacteria and microalgae : Current status and future prospects. Materials Today Bio, 2024, 14(27) ArticleID: 101154

[149]

Zhang, F., Li, Z., Duan, Y., Luan, H., Yin, L., Guo, Z., Chen, C., Xu, M., Gao, W., Fang, R. H., Zhang, L., & Wang, J. (2022b). Extremophile-based biohybrid micromotors for biomedical operations in harsh acidic environments. Science Advances, 8(51), eade6455. https://doi.org/10.1126/sciadv.ade6455

[150]

ZhaoY, HanC, WuY, SunQ, MaM, XieZ, SunR, PeiH. Extraction, structural characterization, and antioxidant activity of polysaccharides from three microalgae. Sci Total Environ, 2024, 931 ArticleID: 172567

[151]

ZhongD, ZhangD, XieT, ZhouM. Biodegradable Microalgae-Based Carriers for Targeted Delivery and Imaging-Guided Therapy toward Lung Metastasis of Breast Cancer. Small, 2020, 16 20) ArticleID: e2000819

[152]

ZhongD, LiW, HuaS, QiY, XieT, QiaoY, ZhouM. Calcium phosphate engineered photosynthetic microalgae to combat hypoxic-tumor by in-situ modulating hypoxia and cascade radio-phototherapy. Theranostics, 2021, 11 8): 3580-3594

[153]

Zhong, D., Zhang, D., Chen, W., He, J., Ren, C., Zhang, X., Kong, N., Tao, W., & Zhou, M. (2021b). Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Science Advances, 7(48), eabi9265. https://doi.org/10.1126/sciadv.abi9265

[154]

Zhong, D., Jin, K., Wang, R., Chen, B., Zhang, J., Ren, C., Chen, X., Lu, J. & Zhou, M. (2024), Microalgae-Based Hydrogel for Inflammatory Bowel Disease and Its Associated Anxiety and Depression. Advanced Materials, 36(24), 2312275.https://doi.org/10.1002/adma.202312275

[155]

ZhouT, XingL, FanY, CuiP, JiangH. Light triggered oxygen-affording engines for repeated hypoxia-resistant photodynamic therapy. J Control Release, 2019, 307: 44-54

[156]

ZhugeW, DingX, ZhangW, ZhangD, WangH, WangJ. Microfluidic generation of helical micromotors for muscle tissue engineering. Chem Eng J, 2022, 447 ArticleID: 137455

Funding

Natural Science Foundation of Liaoning Province(2024-MSLH-062)

Dalian Municipal Health and Wellness Guidance Plan Project(2023ZXYG22)

Fundamental Research Funds for the Central Universities(DUT25Z2505)

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

435

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/