Microalgae-driven microrobots: revolutionizing drug delivery and targeted therapy in biopharmaceuticals
Xianmin Wang , Songlin Ma , Renwu Liu , Tiexin Zhang , Xinyu Mao , Yuxue Chen , Pengcheng Wan , Zhanyou Chi , Fantao Kong
Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (3) : 19
Microalgae-driven microrobots: revolutionizing drug delivery and targeted therapy in biopharmaceuticals
Microalgae are a group of photosynthetic autotrophic microorganisms that are classified as Generally Recognized as safe (GRAS). They are rich in high-value bioactive compounds with broad applications in food, healthcare and pharmaceuticals. Recent research demonstrated that microalgae have significant potential as innovative biomaterials for biomedical applications. The unique phototactic movement of microalgae enables them controlled drug delivery to targeted tissues in patients. Furthermore, microalgae produce oxygen via photosynthesis when exposed to light, overcoming tumor hypoxia limitations and improving biomedical imaging in vivo. Additionally, the intrinsic biophysical properties and modifiability of microalgae can be harnessed for the development of biohybrid robots and bioprinting, expanding their clinical applications. This review highlights current engineering innovations in microalgae for medical applications, such as drug delivery, tumor hypoxia targeting, wound healing, and immunotherapy. The remarkable biocompatibility, diverse biological functionalities, and cost-effectiveness of microalgae provide a promising platform for future application of targeted drug delivery and precision medicine.
Microalgae / Drug delivery / Targeted therapy / Biopharmaceuticals / 3D bioprinting
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
Bazylinski, D. A., Williams, T. J., Lefevre, C. T., Berg, R. J., Zhang, C. L., Bowser, S. S., Dean, A. J., & Beveridge, T. J. (2013). Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria [Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.]. International Journal of Systematic and Evolutionary Microbiology, 63(Pt 3), 801–808. https://doi.org/10.1099/ijs.0.038927-0 |
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
Castro, C., Coutinho, F., Iglesias, P., Oliva-Teles, A. & Couto, A. (2020). Chlorella sp. and Nannochloropsis sp. Inclusion in Plant-Based Diets Modulate the Intestine and Liver Antioxidant Mechanisms of European Sea Bass Juveniles. Fronters in Veterinary Science, 17(7), 607575. https://doi.org/10.3389/fvets.2020.607575 |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
Cui, J., Eddaoudi, A., Purton, S., & Jayasinghe, S. N. (2024). Bio-Sprayed / Threaded Microalgae Remain Viable and Indistinguishable from Controls. 20(42), 2402611. Small https://doi.org/10.1002/smll.202402611 |
| [31] |
|
| [32] |
|
| [33] |
Delalat, B., Sheppard, V. C., Rasi, G. S., Rao, S., Prestidge, C. A., McPhee, G., Rogers, M. L., Donoghue, J. F., Pillay, V., Johns, T. G., Kroger, N., & Voelcker, N. H. (2015). Targeted drug delivery using genetically engineered diatom biosilica [Journal Article; Research Support, Non-U.S. Gov't]. Nature Communications, 6, 8791. https://doi.org/10.1038/ncomms9791 |
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
| [62] |
|
| [63] |
Lee, J., An, S., Kim, K. B., Heo, J., Cho, D., Oh, H., Kim, H., & Bae, S. (2016). Extract of Ettlia sp . YC001 Exerts Photoprotective Effects against UVB Irradiation in Normal Human Dermal Fibroblast (vol 26, pg 775, 2016). Journal of Microbiology and Biotechnology, 26(6), 1162. https://doi.org/10.4014/jmb.2016.2606.1162 |
| [64] |
|
| [65] |
|
| [66] |
|
| [67] |
|
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
Luo, G., Liu, H., Yang, S., Sun, Z., Sun, L., & Wang, L. (2024a). Manufacturing processes , additional nutritional value and versatile food applications of fresh microalgae Spirulina. Frontiers in Nutrition, 11 https://doi.org/10.3389/fnut.2024.1455553 |
| [74] |
|
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
Maucourt, K., Agarwal, M., René, B., & Fermandjian, S. (2002). Use of Chlamydomonas reinhardtii mutants for anticancer drug screening. Biochemical Pharmacology, 64(7), 1125–1131. https://doi.org/10.1016/S0006-2952(02)01256-X |
| [81] |
|
| [82] |
|
| [83] |
Morita, M., Watanabe, Y., & Saiki, H. (2000). High photosynthetic productivity of green microalga Chlorella sorokiniana. Applied Biochemistry and Biotechnology, 87(3), 203–218. https://doi.org/10.1385/ABAB:87:3:203 |
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
Norton, T. A., Melkonian, M., & Andersen, R. A. (1996). Algal biodiversity. Phycologia, 35(4), 308–326. https://doi.org/10.2216/i0031-8884-35-4-308.1 |
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
|
| [95] |
|
| [96] |
Qiao, Y., Yang, F., Xie, T., Du, Z., Zhong, D., Qi, Y., Li, Y., Li, W., Lu, Z., Rao, J., Sun, Y., & Zhou, M. (2020). Engineered algae : A novel oxygen-generating system for effective treatment of hypoxic cancer. Science Advances, 6(21), eaba5996. https://doi.org/10.1126/sciadv.aba5996 |
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
Shah, M. A. R., Zhu, F., Cui, Y., Hu, X., Chen, H., Kayani, S., & Huo, S. (2024). Mechanistic insights into the nutritional and therapeutic potential of Spirulina ( Arthrospira ) spp .: Challenges and opportunities. Trends in Food Science & Technology, 151, 104648. https://doi.org/10.1016/j.tifs.2024.104648 |
| [106] |
|
| [107] |
|
| [108] |
|
| [109] |
|
| [110] |
|
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
|
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
Wang, X., Jiao, N., Tung, S., & Liu, L. (2018). Locomotion of Microstructures Driven by Algae Cells. 2018 International Conference On Manipulation, Automation and Robotics at Small Scales (Marss) |
| [124] |
Wang, X., Yang, C., Yu, Y., & Zhao, Y. (2022). In Situ 3D Bioprinting Living Photosynthetic Scaffolds for Autotrophic Wound Healing. Research, (20)2022, 9794745. https://doi.org/10.34133/2022/9794745 |
| [125] |
Wang, X., Jia, J., Niu, M., Li, W., & Zhao, Y. (2023). Living Chinese Herbal Scaffolds from Microfluidic Bioprinting for Wound Healing. Research, 6, 0138 https://doi.org/10.34133/research.0138 |
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
|
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
|
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
|
| [148] |
|
| [149] |
Zhang, F., Li, Z., Duan, Y., Luan, H., Yin, L., Guo, Z., Chen, C., Xu, M., Gao, W., Fang, R. H., Zhang, L., & Wang, J. (2022b). Extremophile-based biohybrid micromotors for biomedical operations in harsh acidic environments. Science Advances, 8(51), eade6455. https://doi.org/10.1126/sciadv.ade6455 |
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
Zhong, D., Zhang, D., Chen, W., He, J., Ren, C., Zhang, X., Kong, N., Tao, W., & Zhou, M. (2021b). Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Science Advances, 7(48), eabi9265. https://doi.org/10.1126/sciadv.abi9265 |
| [154] |
Zhong, D., Jin, K., Wang, R., Chen, B., Zhang, J., Ren, C., Chen, X., Lu, J. & Zhou, M. (2024), Microalgae-Based Hydrogel for Inflammatory Bowel Disease and Its Associated Anxiety and Depression. Advanced Materials, 36(24), 2312275.https://doi.org/10.1002/adma.202312275 |
| [155] |
|
| [156] |
|
The Author(s)
/
| 〈 |
|
〉 |