Electrostatic charge at the biomaterial-pathogen interface influences antibiotic efficacy

Andrew Hayles , Huu Ngoc Nguyen , Markos Alemie , Jitraporn Vongsvivut , Neethu Ninan , Richard Bright , Panthihage Ruvini Dabare , Christopher Gibson , Vi Khanh Truong , Krasimir Vasilev

Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (2) : 10

PDF
Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (2) : 10 DOI: 10.1007/s44307-025-00061-z
Article

Electrostatic charge at the biomaterial-pathogen interface influences antibiotic efficacy

Author information +
History +
PDF

Abstract

Implant-associated infections (IAI) are a considerable burden for healthcare systems globally. While novel anti-infective biomaterials are being pursued, prophylactic antibiotic treatment remains the most important intervention for mitigating IAI. The antibiotic tolerance of bacteria has been widely studied, but until recently, the contributions of biomaterial-pathogen interactions have been overlooked. In the present study, we investigate how material electrostatic charge influences the physiological state of the most clinically challenging pathogen—Staphylococcus aureus, and the implications on its antibiotic tolerance. We utilized a combination of techniques, including quantitative gene expression and synchrotron-sourced attenuated total reflectance Fourier-transform microspectroscopy, to characterize this phenomenon – elucidating how surface attachment to differently charged substrates drives the pathogen to modify its phenotype. Subsequently, we found a direct relationship between the activity of oppositely charged antibiotics (vancomycin and cefazolin) and the biomaterial-pathogen interface, which we determined to be governed by material electrostatic properties. The findings of the present study have the potential to inform the development of enhanced procedures of antibiotic prophylaxis by instructing personalized biomaterial-antibiotic pairing strategies. These new insights hold promise to contribute to reducing the rate of IAI by enabling clinicians and surgeons to maximize the efficacy of prophylactic antibiotic treatments during implant placement procedures.

Keywords

Antibiotic prophylaxis / Surface charge / Drug tolerance / Biomaterials / Coating / Nanotechnology

Cite this article

Download citation ▾
Andrew Hayles, Huu Ngoc Nguyen, Markos Alemie, Jitraporn Vongsvivut, Neethu Ninan, Richard Bright, Panthihage Ruvini Dabare, Christopher Gibson, Vi Khanh Truong, Krasimir Vasilev. Electrostatic charge at the biomaterial-pathogen interface influences antibiotic efficacy. Advanced Biotechnology, 2025, 3(2): 10 DOI:10.1007/s44307-025-00061-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AlaviMHS, HabibiM, AmrollahiR, Afshar TaromiF. A study on plasma polymerization of acrylic acid using APF plasma focus device. J Fus Energy, 2011, 30: 184-189.

[2]

BayerAS, MishraNN, CheungAL, RubioA, YangSJ. Dysregulation of mprF and dltABCD expression among daptomycin-non-susceptible MRSA clinical isolates. J Antimicrob Chemother, 2016, 71: 2100-2104.

[3]

BayerAS, SchneiderT, SahlHG. Mechanisms of daptomycin resistance in Staphylococcus aureus: role of the cell membrane and cell wall. Ann N Y Acad Sci, 2013, 1277: 139-158.

[4]

BöckerU, OfstadR, WuZ, BertramHC, SockalingumGD, ManfaitM, EgelandsdalB, KohlerA. Revealing covariance structures in fourier transform infrared and Raman microspectroscopy spectra: a study on pork muscle fiber tissue subjected to different processing parameters. Appl Spectrosc, 2007, 61: 1032-1039.

[5]

Bright R, Hayles A, Wood J, Palms D, Barker D, Vasilev K. Interplay between immune and bacterial cells on a biomimetic nanostructured surface: a "Race for the Surface" study. ACS Appl Bio Mater. 2023;6(9):3472–83.

[6]

CavallaroAA, Macgregor-RamiasaMN, VasilevK. Antibiofouling properties of plasma-deposited oxazoline-based thin films. ACS Appl Mater Interfaces, 2016, 8: 6354-6362.

[7]

CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 30th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2020.

[8]

CrawfordT, RodvoldKA, SolomkinJS. Vancomycin for surgical prophylaxis?. Clin Infect Dis, 2012, 54: 1474-1479.

[9]

DabarePR, BachhukaA, PalmsD, Parkinson-LawrenceE, HayballJD, MierczynskaA, VasilevK. Surface chemistry mediated albumin adsorption, conformational changes and influence on innate immune responses. Appl Surf Sci, 2022, 596: 153518.

[10]

DenglerV, FoulstonL, DefrancescoAS, LosickR. An electrostatic net model for the role of extracellular DNA in biofilm formation by Staphylococcus aureus. J Bacteriol, 2015, 197: 3779-3787.

[11]

ErnstCM, StaubitzP, MishraNN, YangS-J, HornigG, KalbacherH, BayerAS, KrausD, PeschelA. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog, 2009, 5. e1000660

[12]

FlurinL, Greenwood-QuaintanceKE, PatelR. Microbiology of polymicrobial prosthetic joint infection. Diagn Microbiol Infect Dis, 2019, 94: 255-259.

[13]

GallinoE, MasseyS, TatoulianM, MantovaniD. Plasma polymerized allylamine films deposited on 316L stainless steel for cardiovascular stent coatings. Surf Coat Technol, 2010, 205: 2461-2468.

[14]

GrafAC, LeonardA, SchäubleM, RieckmannLM, HoyerJ, MaassS, LalkM, BecherD, Pané-FarréJ, RiedelK. Virulence factors produced by Staphylococcus aureus biofilms have a moonlighting function contributing to biofilm integrity. Mol Cell Proteomics, 2019, 18: 1036-1053.

[15]

HaylesA, BrightR, NguyenNH, TruongVK, VongsvivutJ, WoodJ, KiddSP, VasilevK. Staphylococcus aureus surface attachment selectively influences tolerance against charged antibiotics. Acta Biomater, 2024, 175: 369-381.

[16]

HaylesA, BrightR, NguyenNH, TruongVK, WoodJ, PalmsD, VongsvivutJ, BarkerD, VasilevK. Vancomycin tolerance of adherent Staphylococcus aureus is impeded by nanospike-induced physiological changes. NPJ Biofilms Microbiomes, 2023, 9190.

[17]

Hayles A, Bright R, Wood J, Palms D, Zilm P, Brown T, Barker D, Vasilev K. Spiked nanostructures disrupt fungal biofilm and impart increased sensitivity to antifungal treatment. Adv Mater Interfaces. 2022;9(12):2102353.

[18]

John AnneK, SchmalerM, KhannaN, LandmannR. Reversible daptomycin tolerance of adherent staphylococci in an implant infection model. Antimicrob Agents Chemother, 2011, 55: 3510-3516.

[19]

KangTS, KiniRM. Structural determinants of protein folding. Cell Mol Life Sci, 2009, 66: 2341-2361.

[20]

Koprivnjak T, Mlakar V, Swanson L, Fournier B, Peschel A, Weiss Jerrold P. Cation-induced transcriptional regulation of the dlt operon of staphylococcus aureus. J Bacteriol. 2006;188:3622–30.

[21]

KreveS, dos ReisAC. Effect of surface properties of ceramic materials on bacterial adhesion: a systematic review. J Esthet Restor Dent, 2022, 34: 461-472.

[22]

LimD, StrynadkaNCJ. Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol, 2002, 9: 870-876

[23]

LivakKJ, SchmittgenTD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 2001, 25: 402-408.

[24]

LouchHA, EckML, MillerKJ. Osmoadaptation by Staphylococcus aureus : analysis of several strains linked to food poisoning outbreaks. J Food Prot, 1997, 60: 139-143.

[25]

MacgregorM, VasilevK. Perspective on plasma polymers for applied biomaterials nanoengineering and the recent rise of oxazolines. Materials [Online], 2019, 12: 191.

[26]

Majumder MMI, Ahmed T, Ahmed S, Khan AR. Microbiology of catheter associated urinary tract infection. Microbiol Urin Tract Infect Microbial Agents Predisposing Factors. 2018.

[27]

MERCK. IR Spectrum Table [Online]. Sigma Aldrich. 2022. Available: https://www.sigmaaldrich.com/AU/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table. Accessed 11/11/2022 2022.

[28]

Mierczynska-VasilevA, MierczynskiP, ManiukiewiczW, VisalakshanRM, VasilevK, SmithPA. Magnetic separation technology: functional group efficiency in the removal of haze-forming proteins from wines. Food Chem, 2019, 275: 154-160.

[29]

MierczynskaA, MichelmoreA, TripathiA, GorehamRV, SedevR, VasilevK. pH-tunable gradients of wettability and surface potential. Soft Matter, 2012, 8: 8399-8404.

[30]

MoormeierDE, BaylesKW. Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol, 2017, 104: 365-376.

[31]

Movasaghi Z, Rehman S, ur Rehman DI. Fourier Transform Infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev. 2008;43:134–79.

[32]

ParviziJ, GehrkeT, ChenAF. Proceedings of the international consensus on periprosthetic joint infection. Bone Joint J, 2013, 95-b: 1450-1452.

[33]

PenmanR, KariukiR, ShawZL, DekiwadiaC, ChristoffersonAJ, BryantG, VongsvivutJ, BryantSJ, ElbourneA. Gold nanoparticle adsorption alters the cell stiffness and cell wall bio-chemical landscape of Candida albicans fungal cells. J Colloid Interface Sci, 2024, 654: 390-404.

[34]

PhamT, NguyenTT, NguyenNH, HaylesA, LiW, PhamDQ, NguyenCK, NguyenT, VongsvivutJ, NinanN, SabriY, ZhangW, VasilevK, TruongVK. Transforming spirulina maxima biomass into ultrathin bioactive coatings using an atmospheric plasma jet: a new approach to healing of infected wounds. Small, 2023, n/a: 2305469

[35]

RamiasaMN, CavallaroAA, MierczynskaA, ChristoSN, GleadleJM, HayballJD, VasilevK. Plasma polymerised polyoxazoline thin films for biomedical applications. Chem Commun, 2015, 51: 4279-4282.

[36]

RuzinA, SeverinA, MoghazehSL, EtienneJ, BradfordPA, ProjanSJ, ShlaesDM. Inactivation of mprF affects vancomycin susceptibility in Staphylococcus aureus. Biochim Biophys Acta, 2003, 1621: 117-121.

[37]

SchierholzJM, BeuthJ. Implant infections: a haven for opportunistic bacteria. J Hosp Infect, 2001, 49: 87-93.

[38]

ShahiA, ParviziJ. Prevention of periprosthetic joint infection. Arch Bone Jt Surg, 2015, 3: 72-81

[39]

ShivuB, SeshadriS, LiJ, ObergKA, UverskyVN, FinkAL. Distinct β-sheet structure in protein aggregates determined by ATR–FTIR spectroscopy. Biochemistry, 2013, 52: 5176-5183.

[40]

SinghR, RayP, DasA, SharmaM. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother, 2010, 65: 1955-1958.

[41]

SiowKS, BritcherL, KumarS, GriesserHJ. Plasma polymers containing sulfur and their co-polymers with 1,7-octadiene: chemical and structural analysis. Plasma Processes Polym, 2017, 14: 1600044.

[42]

TaheriS, CavallaroA, ChristoSN, SmithLE, MajewskiP, BartonM, HayballJD, VasilevK. Substrate independent silver nanoparticle based antibacterial coatings. Biomaterials, 2014, 35: 4601-4609.

[43]

TomlinsonBR, MalofME, ShawLN. A global transcriptomic analysis of Staphylococcus aureus biofilm formation across diverse clonal lineages. Microb Genom, 2021, 7: 000598

[44]

TrampuzA, WidmerAF. Infections associated with orthopedic implants. Curr Opin Infect Dis, 2006, 19: 349-356.

[45]

TusonHH, WeibelDB. Bacteria–surface interactions. Soft Matter, 2013, 9: 4368-4380.

[46]

VasilevK, MichelmoreA, MartinekP, ChanJ, SahV, GriesserHJ, ShortRD. Early stages of growth of plasma polymer coatings deposited from nitrogen- and oxygen-containing monomers. Plasma Processes Polym, 2010, 7: 824-835.

[47]

VasilevK, SahVR, GorehamRV, NdiC, ShortRD, GriesserHJ. Antibacterial surfaces by adsorptive binding of polyvinyl-sulphonate-stabilized silver nanoparticles. Nanotechnology, 2010, 21. 215102

[48]

VisalakshanRM, MacgregorMN, SasidharanS, GhazaryanA, Mierczynska-VasilevAM, MorsbachS, MailänderV, LandfesterK, HayballJD, VasilevK. Biomaterial surface hydrophobicity-mediated serum protein adsorption and immune responses. ACS Appl Mater Interfaces, 2019, 11: 27615-27623.

[49]

VongsvivutJ, Pérez-GuaitaD, WoodBR, HeraudP, KhambattaK, HartnellD, HackettMJ, TobinMJ. Synchrotron macro ATR-FTIR microspectroscopy for high-resolution chemical mapping of single cells. Analyst, 2019, 144: 3226-3238.

[50]

WeidenmaierC, PeschelA, KempfVA, LucindoN, YeamanMR, BayerAS. DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun, 2005, 73: 8033-8038.

[51]

WilldiggJR, HelmannJD. Mini review: bacterial membrane composition and its modulation in response to stress. Front Mol Biosci, 2021, 8. 634438

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/