An alternative approach to combat multidrug-resistant bacteria: new insights into traditional Chinese medicine monomers combined with antibiotics

Cunchun Dai , Ying Liu , Fan Lv , Ping Cheng , Shaoqi Qu

Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (1) : 6

PDF
Advanced Biotechnology ›› 2025, Vol. 3 ›› Issue (1) : 6 DOI: 10.1007/s44307-025-00059-7
Review

An alternative approach to combat multidrug-resistant bacteria: new insights into traditional Chinese medicine monomers combined with antibiotics

Author information +
History +
PDF

Abstract

Antibiotic treatment is crucial for controlling bacterial infections, but it is greatly hindered by the global prevalence of multidrug-resistant (MDR) bacteria. Although traditional Chinese medicine (TCM) monomers have shown high efficacy against MDR infections, the inactivation of bacteria induced by TCM is often incomplete and leads to infection relapse. The synergistic combination of TCM and antibiotics emerges as a promising strategy to mitigate the limitations inherent in both treatment modalities when independently administered. This review begins with a succinct exploration of the molecular mechanisms such as the antibiotic resistance, which informs the antibiotic discovery efforts. We subsequently provide an overview of the therapeutic effects of TCM/antibiotic combinations that have been developed. Finally, the factors that affect the therapeutic outcomes of these combinations and their underlying molecular mechanisms are systematically summarized. This overview offers insights into alternative strategies to treat clinical infections associated with MDR bacteria and the development of novel TCM/antibiotic combination therapies, with the goal of guiding their appropriate usage and further development.

Cite this article

Download citation ▾
Cunchun Dai, Ying Liu, Fan Lv, Ping Cheng, Shaoqi Qu. An alternative approach to combat multidrug-resistant bacteria: new insights into traditional Chinese medicine monomers combined with antibiotics. Advanced Biotechnology, 2025, 3(1): 6 DOI:10.1007/s44307-025-00059-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abreu AC, Saavedra MJ, Simões LC, Simões M. Combinatorial approaches with selected phytochemicals to increase antibiotic efficacy against Staphylococcus aureus biofilms. Biofouling, 2016, 32(9): 1103-1114.

[2]

Arzanlou M, Chai WC, Venter H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem, 2017, 61(1): 49-59.

[3]

Babu Rajendran N, Mutters NT, Marasca G, Conti M, Sifakis F, Vuong C, Voss A, Baño JR, Tacconelli E. Mandatory surveillance and outbreaks reporting of the WHO priority pathogens for research & discovery of new antibiotics in European countries. Clin Microbiol Infect, 2020, 26(7): 943.

[4]

Baym M, Stone LK, Kishony R. Multidrug evolutionary strategies to reverse antibiotic resistance. Science, 2016, 351(6268): aad3292.

[5]

Belousov MV, Kosolapova AO, Fayoud H, Sulatsky MI, Sulatskaya AI, Romanenko MN, Bobylev AG, Antonets KS, Nizhnikov AA. OmpC and OmpF outer membrane proteins of Escherichia coli and Salmonella enterica form Bona Fide amyloids. Int J Mol Sci, 2023, 24(21. 15522

[6]

Benesic A, Jalal K, Gerbes AL. Drug-drug combinations can enhance toxicity as shown by monocyte-derived hepatocyte-like cells from patients with idiosyncratic drug-induced liver injury. Toxicol Sci, 2019, 171(2): 296-302.

[7]

Berglund F, Böhm ME, Martinsson A, Ebmeyer S, Österlund T, Johnning A, Larsson DGJ, Kristiansson E. Comprehensive screening of genomic and metagenomic data reveals a large diversity of tetracycline resistance genes. Microb Genom, 2020, 6(11): mgen000455.

[8]

Berglund F, Marathe NP, Österlund T, Bengtsson-Palme J, Kotsakis S, Flach CF, Larsson DGJ, Kristiansson E. Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data. Microbiome, 2017, 5(1): 134.

[9]

Bernal P, Lemaire S, Pinho MG, Mobashery S, Hinds J, Taylor PW. Insertion of epicatechin gallate into the cytoplasmic membrane of methicillin-resistant Staphylococcus aureus disrupts penicillin-binding protein (PBP) 2a-mediated beta-lactam resistance by delocalizing PBP2. J Biol Chem, 2010, 285(31): 24055-24065.

[10]

Biswas S, Brunel JM, Dubus JC, Reynaud-Gaubert M, Rolain JM. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti Infect Ther, 2012, 10(8): 917-934.

[11]

Blanco P, Hernando-Amado S, Reales-Calderon JA, Corona F, Lira F, Alcalde-Rico M, Bernardini A, Sanchez MB, Martinez JL. Bacterial multidrug efflux pumps: much more than antibiotic resistance determinants. Microorganisms, 2016, 4(1): 14.

[12]

Butler MS, Paterson DL. Antibiotics in the clinical pipeline in October 2019. J Antibiot, 2020, 73(6): 329-364.

[13]

Cai JY, Li J, Hou YN, Ma K, Yao GD, Liu WW, Ikejima T. Concentration-dependent dual effects of silibinin on kanamycin-induced cells death in Staphylococcus aureus. Biomed Pharmacother, 2018, 102 782-791.

[14]

Chait R, Craney A, Kishony R. Antibiotic interactions that select against resistance. Nature, 2007, 446(7136): 668-671.

[15]

Chan BC, Ip M, Lau CB, Lui SL, Jolivalt C, Ganem-Elbaz C, Leung PC. Synergistic effects of baicalein with ciprofloxacin against NorA over-expressed methicillin-resistant Staphylococcus aureus (MRSA) and inhibition of MRSA pyruvate kinase. J Ethnopharmacol, 2011, 137(1): 767-773.

[16]

Chevalier S, Bouffartigues E, Bodilis J, Maillot O, Lesouhaitier O, Feuilloley MGJ, Cornelis P. Structure, function and regulation of Pseudomonas aeruginosa porins. FEMS Microbiol Rev, 2017, 41(5): 698-722.

[17]

Choi H, Yang Z, Weisshaar JC. Oxidative stress induced in E. coli by the human antimicrobial peptide LL-37. PLoS Pathog., 2017, 13(6. e1006481

[18]

Clancy J, Dib-Hajj F, Petitpas JW, Yuan W. Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae. Antimicrob Agents Chemother, 1997, 41(12): 2719-2723.

[19]

Darby EM, Trampari E, Siasat P, Gaya MS, Alav I, Webber MA, Blair JMA. Molecular mechanisms of antibiotic resistance revisited. Nat Rev Microbiol, 2023, 21(5): 280-295.

[20]

Denny BJ, Lambert PA, West PW. The flavonoid galangin inhibits the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia. FEMS Microbiol Lett, 2002, 208(1): 21-24.

[21]

Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, Velkov T. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot, 2014, 67(2): 147-151.

[22]

Dickey SW, Cheung GYC, Otto M. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat Rev Drug Discov, 2017, 16(7): 457-471.

[23]

Drusano GL, Hope W, MacGowan A, Louie A. Suppression of emergence of resistance in pathogenic bacteria: keeping our powder dry, part 2. Antimicrob Agents Chemother, 2015, 60(3): 1194-1201.

[24]

Durand GA, Raoult D, Dubourg G. Antibiotic discovery: history, methods and perspectives. Int J Antimicrob Agents, 2019, 53(4): 371-382.

[25]

Durão P, Balbontín R, Gordo I. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol, 2018, 26(8): 677-691.

[26]

Dwivedi GR, Maurya A, Yadav DK, Singh V, Khan F, Gupta MK, Singh M, Darokar MP, Srivastava SK. Synergy of clavine alkaloid 'chanoclavine' with tetracycline against multi-drug-resistant E. coli. J Biomol Struct Dyn, 2019, 37(5): 1307-1325.

[27]

Eumkeb G, Chukrathok S. Synergistic activity and mechanism of action of ceftazidime and apigenin combination against ceftazidime-resistant Enterobacter cloacae. Phytomedicine, 2013, 20(3–4): 262-269.

[28]

Eumkeb G, Siriwong S, Phitaktim S, Rojtinnakorn N, Sakdarat S. Synergistic activity and mode of action of flavonoids isolated from smaller galangal and amoxicillin combinations against amoxicillin-resistant Escherichia coli. J Appl Microbiol, 2012, 112(1): 55-64.

[29]

Falagas ME, Rafailidis PI, Ioannidou E, Alexiou VG, Matthaiou DK, Karageorgopoulos DE, Michalopoulos A. Colistin therapy for microbiologically documented multidrug-resistant Gram-negative bacterial infections: a retrospective cohort study of 258 patients. Int J Antimicrob Agents, 2010, 35(2): 194-199.

[30]

Fan L, Pan Z, Zhong Y, Guo J, Liao X, Pang R, Su Y. L-glutamine sensitizes Gram-positive-resistant bacteria to gentamicin killing. Microbiol Spectr, 2023, 11(6. e0161923

[31]

Fujita M, Shiota S, Kuroda T, Hatano T, Yoshida T, Mizushima T, Tsuchiya T. Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus. Microbiol Immunol, 2005, 49(4): 391-396.

[32]

Gallique M, Wei K, Maisuria VB, Okshevsky M, McKay G, Nguyen D, Tufenkji N. Cranberry-derived proanthocyanidins potentiate β-lactam antibiotics against resistant bacteria. Appl Environ Microbiol, 2021, 87(10): e00127.

[33]

Glavier M, Puvanendran D, Salvador D, Decossas M, Phan G, Garnier C, Lambert O. Antibiotic export by MexB multidrug efflux transporter is allosterically controlled by a MexA-OprM chaperone-like complex. Nat Commun, 2020, 11(1): 4948.

[34]

Gómara M, Ramón-García S. The FICI paradigm: correcting flaws in antimicrobial in vitro synergy screens at their inception. Biochem Pharmacol, 2019, 163 299-307.

[35]

Guran M, Cakiral K, Terali K, Kandemir T, Sanliturk G, Ocal MM, Nagiyev T, Koksal F. Meropenem in combination with baicalein exhibits synergism against extensively drug resistant and pan-drug-resistant Acinetobacter baumannii clinical isolates in vitro. Pathog, 2023, 81 ftad007.

[36]

Hall CW, Mah TF. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev, 2017, 41(3): 276-301.

[37]

Hegreness M, Shoresh N, Damian D, Hartl D, Kishony R. Accelerated evolution of resistance in multidrug environments. Proc Natl Acad Sci, 2008, 105(37): 13977-13981.

[38]

Hemaiswarya S, Doble M. Synergistic interaction of phenylpropanoids with antibiotics against bacteria. J Med Microbiol, 2010, 59(12): 1469-1476.

[39]

Horna G, López M, Guerra H, Saénz Y, Ruiz J. Interplay between MexAB-OprM and MexEF-OprN in clinical isolates of Pseudomonas aeruginosa. Sci Rep, 2018, 8(1): 16463.

[40]

Hu J, Che C, Jiang W, Chen Z, Tu J, Han X, Qi K. Avian Pathogenic Escherichia coli through Pfs affects the tran-scription of membrane proteins to resist β-lactam antibiotics. Vet Sci, 2022, 9(3): 98.

[41]

Husnik F, McCutcheon JP. Functional horizontal gene transfer from bacteria to eukaryotes. Nat Rev Microbiol, 2018, 16(2): 67-79.

[42]

Jaktaji RP, Mohammadi P. Effect of total alkaloid extract of local Sophora alopecuroides on minimum inhibitory concentration and intracellular accumulation of ciprofloxacin, and acrA expression in highly resistant Escherichia coli clones. J Glob Antimicrob, 2018, 12 55-60.

[43]

Janardhanan J, Bouley R, Martínez-Caballero S, Peng Z, Batuecas-Mordillo M, Meisel JE, Chang M. The quinazolinone allosteric inhibitor of PBP 2a synergizes with piperacillin and tazobactam against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 2019, 63(5): e02637-e2718.

[44]

Jeffres MN. The whole price of vancomycin: toxicities, troughs, and time. Drugs, 2017, 77(11): 1143-1154.

[45]

Johnson BK, Abramovitch RB. Small molecules that sabotage bacterial virulence. Trends Pharmacol Sci, 2017, 38(4): 339-362.

[46]

Joung DK, Kang OH, Seo YS, Zhou T, Lee YS, Han SH, Kwon DY. Luteolin potentiates the effects of aminoglycoside and β-lactam antibiotics against methicillin-resistant Staphylococcus aureus in vitro. Exp Ther Med, 2016, 11(6): 2597-2601.

[47]

Khameneh B, Iranshahy M, Ghandadi M, Atashbeyk DG, Bazzaz BSF, Iranshahi M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev Ind Pharm, 2015, 41(6): 989-994.

[48]

Kingston DGI, Cassera MB. Antimalarial natural products. Prog Chem Org Nat Prod, 2022, 117 1-106.

[49]

Konovalova A, Kahne DE, Silhavy TJ. Outer membrane biogenesis. Annu Rev Microbiol, 2017, 71 539-556.

[50]

Kumar A, Schweizer HP. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev, 2005, 57(10): 1486-1513.

[51]

Leclercq R. Mechanisms of resistance to macrolides and lincosamides: nature of the resistance elements and their clinical implications. Clin Infect Dis, 2002, 34(4): 482-492.

[52]

Lee CY, Huang CH, Lu PL, Ko WC, Chen YH, Hsueh PR. Role of rifampin for the treatment of bacterial infections other than mycobacteriosis. J Infect, 2017, 75(5): 395-408.

[53]

Lee WX, Basri DF, Ghazali AR. Bactericidal effect of pterostilbene alone and in combination with gentamicin against human pathogenic bacteria. Molecules, 2017, 22(3): 463.

[54]

Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol, 2002, 92 65-71.

[55]

Li Y, Huang J, Li L, Liu L. Synergistic activity of berberine with azithromycin against Pseudomonas aeruginosa isolated from patients with cystic fibrosis of lung in vitro and in vivo. Cell Physiol Biochem, 2017, 42(4): 1657-1669.

[56]

Li X, Song Y, Wang L, Kang G, Wang P, Yin H, Huang H. A potential combination therapy of berberine hydrochloride with antibiotics against multidrug-resistant Acinetobacter baumannii. Front Cell Infect Microbiol, 2021, 11. 660431

[57]

Li J, Feng S, Liu X, Jia X, Qiao F, Guo J, Deng S. Effects of traditional Chinese medicine and its active ingredients on drug-resistant bacteria. Front Pharmacol, 2022, 13. 837907

[58]

Li L, Wang L, Yang S, Zhang Y, Gao Y, Ji Q, Fu L, Wei Q, Sun F, Qu S. Tigecycline-resistance mechanisms and biological characteristics of drug-resistant Salmonella Typhimurium strains in vitro. Vet Microbiol, 2024, 288. 109927

[59]

Liang RM, Yong XL, Duan YQ, Tan YH, Zeng P, Zhou ZY, Jiang Y, Wang SH, Jiang YP, Huang XC, Dong ZH, Hu TT, Shi HQ, Li N. Potent in vitro synergism of fusidic acid (FA) and berberine chloride (BBR) against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA). World J Microbiol Biotechnol, 2014, 30(11): 2861-2869.

[60]

Lima LM, Silva B, Barbosa G, Barreiro EJ. β-lactam antibiotics: an overview from a medicinal chemistry perspective. Eur J Med Chem, 2020, 208. 112829

[61]

Liu IX, Durham DG, Richards RM. Baicalin synergy with beta-lactam antibiotics against methicillin-resistant Staphylococcus aureus and other beta-lactam-resistant strains of S. aureus. J Pharm Pharmacol, 2000, 52(3): 361-366.

[62]

Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Shen J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis, 2016, 16(2): 161-168.

[63]

Liu Y, Li R, Xiao X, Wang Z. Antibiotic adjuvants: an alternative approach to overcome multi-drug resistant Gram-negative bacteria. Crit Rev Microbiol, 2019, 45(3): 301-314.

[64]

Liu T, Luo J, Bi G, Du Z, Kong J, Chen Y. Antibacterial synergy between linezolid and baicalein against methicillin-resistant Staphylococcus aureus biofilm in vivo. Microb Pathog, 2020, 147. 104411

[65]

Liu Y, Tong Z, Shi J, Li R, Upton M, Wang Z. Drug repurposing for next-generation combination therapies against multidrug-resistant bacteria. Theranostics, 2021, 11(10): 4910-4928.

[66]

Lumbreras-Iglesias P, Rodicio MR, Valledor P, Suárez-Zarracina T, Fernández J. High-level carbapenem resistance among OXA-48-producing Klebsiella pneumoniae with functional OmpK36 alterations: maintenance of ceftazidime/avibactam susceptibility. Antibiotics, 2021, 10(10. 1174

[67]

Meng J, Wang W, Ding J, Gu B, Zhou F, Wu D, Fu X, Qiao M, Liu J. The synergy effect of matrine and berberine hydrochloride on treating colibacillosis caused by an avian highly pathogenic multidrug-resistant Escherichia coli. Poult Sci, 2024, 103(10. 104151

[68]

Morita Y, Nakashima K, Nishino K, Kotani K, Tomida J, Inoue M, Kawamura Y. Berberine is a novel type efflux inhibitor which attenuates the MexXY-mediated aminoglycoside resistance in Pseudomonas aeruginosa. Front Microbiol, 2016, 7 1223.

[69]

Mun SH, Lee YS, Han SH, Lee SW, Cha SW, Kim SB, Seo YS, Kong R, Kang DH, Shin DW, Kang OH, Kwon DY. In vitro potential effect of morin in the combination with β-lactam antibiotics against methicillin-resistant Staphylococcus aureus. Foodborne Pathog Dis, 2015, 12(6): 545-550.

[70]

Muñoz KA, Ulrich RJ, Vasan AK, Sinclair M, Wen PC, Holmes JR, Lee HY, Hung CC, Fields CJ, Tajkhorshid E, Lau GW, Hergenrother PJ. A Gram-negative-selective antibiotic that spares the gut microbiome. Nature, 2024, 630(8016): 429-436.

[71]

Nazarov PA. MDR pumps as crossroads of resistance: antibiotics and bacteriophages. Antibiotics, 2022, 11(6. 734

[72]

Nishino K, Yamaguchi A. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J Bacteriol, 2001, 183(20): 5803-5812.

[73]

Nordmann P, Helsens N, Poirel L, Sadek M, Bumann D, Findlay J. The OprF porin as a potential target for the restoration of carbapenem susceptibility in Pseudomonas aeruginosa expressing acquired carbapenemases. Antimicrob Agents Chemother, 2024, 68(10. e0076124

[74]

Novy P, Urban J, Leuner O, Vadlejch J, Kokoska L. In vitro synergistic effects of baicalin with oxytetracycline and tetracycline against Staphylococcus aureus. J Antimicrob Chemother, 2011, 66(6): 1298-1300.

[75]

Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother, 2003, 52(1. 1

[76]

Outterson K, Powers JH, Daniel GW, McClellan MB. Repairing the broken market for antibiotic innovation. Health Aff, 2015, 34(2): 277-285.

[77]

Pajares-Chamorro N, Hammer ND, Chatzistavrou X. Materials for restoring lost activity: old drugs for new bugs. Adv Drug Deliv Rev, 2022, 186. 114302

[78]

Pal A, Tripathi A. Demonstration of bactericidal and synergistic activity of quercetin with meropenem among pathogenic carbapenem resistant Escherichia coli and Klebsiella pneumoniae. Microb Pathog, 2020, 143. 104120

[79]

Palacios L, Rosado H, Micol V, Rosato AE, Bernal P, Arroyo R, Taylor PW. Staphylococcal phenotypes induced by naturally occurring and synthetic membrane-interactive polyphenolic β-lactam resistance modifiers. PLoS ONE, 2014, 9(4. e93830

[80]

Peyclit L, Baron SA, Rolain JM. Drug repurposing to fight colistin and carbapenem-resistant bacteria. Front Cell Infect Microbiol, 2019, 9. 193

[81]

Phitaktim S, Chomnawang M, Sirichaiwetchakoon K, Dunkhunthod B, Hobbs G, Eumkeb G. Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC Microbiol., 2016, 16(1): 195.

[82]

Piddock LJV. Mechanisms of fluoroquinolone resistance: an update 1994–1998. Drugs, 1999, 58(2): 11-18.

[83]

Pimchan T, Maensiri D, Eumkeb G. Synergy and mechanism of action of α-mangostin and ceftazidime against ceftazidime-resistant Acinetobacter baumannii. Lett Appl Microbiol, 2017, 65(4): 285-291.

[84]

Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol, 2002, 3(2): 77-98.

[85]

Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J Bacteriol, 1993, 175(22): 7363-7372.

[86]

Pourahmad Jaktaji R, Mohammadi P. Effect of total alkaloid extract of local Sophora alopecuroides on minimum inhibitory concentration and intracellular accumulation of ciprofloxacin, and acrA expression in highly resistant Escherichia coli clones. J Glob Antimicrob Resist, 2018, 12 55-60.

[87]

Qian M, Tang S, Wu C, Wang Y, He T, Chen T, Xiao X. Synergy between baicalein and penicillins against penicillinase-producing Staphylococcus aureus. Int J Med Microbiol, 2015, 305(6): 501-504.

[88]

Qu S, Dai C, Shen Z, Tang Q, Wang H, Zhai B, Hao Z. Mechanism of synergy between tetracycline and quercetin against antibiotic resistant Escherichia coli. Front Microbiol, 2019, 10. 2536

[89]

Quinn JP, Dudek EJ, DiVincenzo CA, Lucks DA, Lerner SA. Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. J Infect Dis, 1986, 154(2): 289-294.

[90]

Rex JH, Eisenstein BI, Alder J, Goldberger M, Meyer R, Dane A, Jackson J. A comprehensive regulatory framework to address the unmet need for new antibacterial treatments. Lancet Infect Dis, 2013, 13(3): 269-275.

[91]

Richter MF, Drown BS, Riley AP, Garcia A, Shirai T, Svec RL, Hergenrother PJ. Predictive compound accumulation rules yield a broad-spectrum antibiotic. Nature, 2017, 545(7654): 299-304.

[92]

Roccaro AS, Blanco AR, Giuliano F, Rusciano D, Enea V. Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrob Agents Chemother, 2004, 48(6): 1968-1973.

[93]

Ruggerone P, Murakami S, Pos KM, Vargiu AV. RND efflux pumps: structural information translated into function and inhibition mechanisms. Curr Top Med Chem, 2013, 13(24): 3079-3100.

[94]

Sabnis A, Hagart KL, Klöckner A, Becce M, Evans LE, Furniss RCD, Edwards AM Colistin Kills Bacteria by Targeting Lipopolysaccharide in the Cytoplasmic Membrane, 2021, 10 e65836

[95]

Satlin MJ, Lewis JS, Weinstein MP, Patel J, Humphries RM, Kahlmeter G, Turnidge J. Clinical and Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing Position Statements on Polymyxin B and Colistin Clinical Breakpoints. Clin Infect Dis, 2020, 71(9): e523-e529.

[96]

Schmidt S, Heymann K, Melzig MF, Bereswill S, Heimesaat MM. Glycyrrhizic Acid Decreases Gentamicin-Resistance in Vancomycin-Resistant Enterococci. Planta Med, 2016, 82(18): 1540-1545.

[97]

Sharma HK, Gupta P, Nagpal D, Mukherjee M, Parmar VS, Lather V. Virtual screening and antimicrobial evaluation for identification of natural compounds as the prospective inhibitors of antibacterial drug resistance targets in Staphylococcus aureus. Fitoterapia, 2023, 168. 105554

[98]

Shi C, Li M, Muhammad I, Ma X, Chang Y, Li R, Liu F. Combination of berberine and ciprofloxacin reduces multi-resistant Salmonella strain biofilm formation by depressing mRNA expressions of luxS, rpoE, and ompR. J Vet Sci, 2018, 19(6): 808-816.

[99]

Shortridge VD, Doern GV, Brueggemann AB, Beyer JM, Flamm RK. Prevalence of macrolide resistance mechanisms in Streptococcus pneumoniae isolates from a multicenter antibiotic resistance surveillance study conducted in the United States in 1994–1995. Clin Infect Dis, 1999, 29(5): 1186-1188.

[100]

Siarheyeva A, Lopez JJ, Lehner I, Hellmich UA, van Veen HW, Glaubitz C. Probing the molecular dynamics of the ABC multidrug transporter LmrA by deuterium solid-state nuclear magnetic resonance. Biochemistry, 2007, 46(11): 3075-3083.

[101]

Simpkin VL, Renwick MJ, Kelly R, Mossialos E. Incentivising innovation in antibiotic drug discovery and development: progress, challenges and next steps. J Antibiot, 2017, 70(12): 1087-1096.

[102]

Siriwong S, Thumanu K, Hengpratom T, Eumkeb G. Synergy and Mode of Action of Ceftazidime plus Quercetin or Luteolin on Streptococcus pyogenes. Evid Based Complement Alternat Med. 2015;2015:759459.

[103]

Siriyong T, Chusri S, Srimanote P, Tipmanee V, Voravuthikunchai SP. Holarrhena antidysenterica Extract and Its Steroidal Alkaloid, Conessine, as Resistance-Modifying Agents Against Extensively Drug-Resistant Acinetobacter baumannii. Microb Drug Resist, 2016, 22(4): 273-282.

[104]

Siriyong T, Voravuthikunchai SP, Coote PJ. Steroidal alkaloids and conessine from the medicinal plant Holarrhena antidysenterica restore antibiotic efficacy in a Galleria mellonella model of multidrug-resistant Pseudomonas aeruginosa infection. BMC Complement Altern Med, 2018, 18(1): 285.

[105]

Smith PA, Koehler MFT, Girgis HS, Yan D, Chen Y, Chen Y, Heise CE. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature, 2018, 561(7722): 189-194.

[106]

Song M, Liu Y, Li T, Liu X, Hao Z, Ding S, Shen J. Plant Natural Flavonoids Against Multidrug Resistant Pathogens. Adv Sci, 2021, 8(15. e2100749

[107]

Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: building the web of life. Nat Rev Genet, 2015, 16(8): 472-482.

[108]

Steenbergen JN, Alder J, Thorne GM, Tally FP. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother, 2005, 55(3): 283-288.

[109]

Su F, Wang J. Berberine inhibits the MexXY-OprM efflux pump to reverse imipenem resistance in a clinical carbapenem-resistant Pseudomonas aeruginosa isolate in a planktonic state. Exp Ther Med, 2018, 15(1): 467-472.

[110]

Tait-Kamradt A, Davies T, Appelbaum PC, Depardieu F, Courvalin P, Petitpas J, Sutcliffe J. Two new mechanisms of macrolide resistance in clinical strains of Streptococcus pneumoniae from Eastern Europe and North America. Antimicrob Agents Chemother, 2000, 44(12): 3395-3401.

[111]

Taylor PW. Interactions of Tea-Derived Catechin Gallates with Bacterial Pathogens. Molecules, 2020, 25(8. 1986

[112]

Tsutsumi K, Yonehara R, Ishizaka-Ikeda E, Miyazaki N, Maeda S, Iwasaki K, Yamashita E. Structures of the wild-type MexAB-OprM tripartite pump reveal its complex formation and drug efflux mechanism. Nat Commun, 2019, 10(1): 1520.

[113]

Vipin C, Saptami K, Fida F, Mujeeburahiman M, Rao SS, Athmika Arun AB, Rekha PD. Potential synergistic activity of quercetin with antibiotics against multidrug-resistant clinical strains of Pseudomonas aeruginosa. PLoS ONE, 2020, 15(11. e0241304

[114]

Wang Z, Koirala B, Hernandez Y, Zimmerman M, Park S, Perlin DS, Brady SF. A naturally inspired antibiotic to target multidrug-resistant pathogens. Nature, 2022, 601(7894): 606-611.

[115]

Worthington RJ, Melander C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol, 2013, 31(3): 177-184.

[116]

Wozniak A, Villagra NA, Undabarrena A, Gallardo N, Keller N, Moraga M, García P. Porin alterations present in non-carbapenemase-producing Enterobacteriaceae with high and intermediate levels of carbapenem resistance in Chile. J Med Microbiol, 2012, 61(9): 1270-1279.

[117]

Xu Y, Quan H, Wang Y, Zhong H, Sun J, Xu J, Jiang Y. Requirement for Ergosterol in Berberine Tolerance Underlies Synergism of Fluconazole and Berberine against Fluconazole-Resistant Candida albicans Isolates. Front Cell Infect Microbiol, 2017, 7. 491

[118]

Yong J, Zu R, Huang X, Ge Y, Li Y. Synergistic Effect of Berberine Hydrochloride and Fluconazole Against Candida albicans Resistant Isolates. Front Microbiol, 2020, 11. 1498

[119]

Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol, 2003, 185(19): 5657-5664.

[120]

Yu HH, Kim KJ, Cha JD, Kim HK, Lee YE, Choi NY, You YO. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J Med Food, 2005, 8(4): 454-461.

[121]

Zhao WH, Hu ZQ, Hara Y, Shimamura T. Inhibition of penicillinase by epigallocatechin gallate resulting in restoration of antibacterial activity of penicillin against penicillinase-producing Staphylococcus aureus. Antimicrob Agents Chemother, 2002, 46(7): 2266-2268.

[122]

Zhong ZX, Zhou S, Liang YJ, Wei YY, Li Y, Long TF, Sun J. Natural flavonoids disrupt bacterial iron homeostasis to potentiate colistin efficacy. Sci Adv, 2023, 9(23): eadg4205.

[123]

Zhou H, Xu M, Guo W, Yao Z, Du X, Chen L, Zhou T. The antibacterial activity of kaempferol combined with colistin against colistin-resistant gram-negative bacteria. Microbiol Spectr, 2022, 10(6. e0226522

[124]

Zuo GY, Li Y, Han J, Wang GC, Zhang YL, Bian ZQ. Antibacterial and synergy of berberines with antibacterial agents against clinical multi-drug resistant isolates of methicillin-resistant Staphylococcus aureus (MRSA). Molecules, 2012, 17(9): 10322-10330.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

646

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/