Saving coral reefs: significance and biotechnological approaches for coral conservation
Pansa Cecchini , Thomas Nitta , Edoardo Sena , Zhi-Yan Du
Advanced Biotechnology ›› 2024, Vol. 2 ›› Issue (4) : 42
Saving coral reefs: significance and biotechnological approaches for coral conservation
Coral reefs are highly productive ecosystems that provide valuable services to coastal communities worldwide. However, both local and global anthropogenic stressors, threaten the coral-algal symbiosis that enables reef formation. This breakdown of the symbiotic relationship, known as bleaching, is often triggered by cumulative cell damage. UV and heat stress are commonly implicated in bleaching, but other anthropogenic factors may also play a role. To address coral loss, active restoration is already underway in many critical regions. Additionally, coral researchers are exploring assisted evolution methods for greater coral resilience to projected climate change. This review provides an overview of the symbiotic relationship, the mechanisms underlying coral bleaching in response to stressors, and the strategies being pursued to address coral loss. Despite the necessity of ongoing research in all aspects of this field, action on global climate change remains crucial for the long-term survival of coral reefs.
Coral / Coral bleaching / Conservation / Climate change / Resilience / Symbiosis / Zooxanthellae
| [1] |
|
| [2] |
Adir N, Zer H, Shochat S, Ohad I. Photoinhibition - a historical perspective. Photosynth Res. 2003;76(1-3):343-70. https://doi.org/10.1023/A:1024969518145. |
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
Albright, R., 2018. Ocean Acidification and Coral Bleaching, in: van Oppen, M.J.H., Lough, J.M. (Eds.), Coral Bleaching: Patterns, Processes, Causes and Consequences. Springer International Publishing, Cham, pp. 295–323. https://doi.org/10.1007/978-3-319-75393-5_12 |
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O. Ocean acidification causes bleaching and productivity loss in coral reef builders Proceedings of the National Academy of Sciences. 2008;105:45 17442-17446. https://doi.org/10.1073/pnas.0804478105. |
| [15] |
|
| [16] |
Arena, P.T., Jordan, L.K.B., Spieler, R.E., 2007. Fish assemblages on sunken vessels and natural reefs in southeast Florida, USA. Biodiversity in Enclosed Seas and Artificial Marine Habitats. Developments in Hydrobiology 157–171. https://doi.org/10.1007/978-1-4020-6156-1_14 |
| [17] |
|
| [18] |
Banaszak, A.T., Guest, J.R., Pernice, M., Yan Chan, W., Peplow, L.M., Menéndez, P., Hoffmann, A.A., H van Oppen, M.J., 2018. Interspecific Hybridization May Provide Novel Opportunities for Coral Reef Restoration. Frontiers in Marine Science | www.frontiersin.org 1, 160. https://doi.org/10.3389/fmars.2018.00160 |
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
Barott, K.L., Huffmyer, A.S., Davidson, J.M., Lenz, E.A., Matsuda, S.B., Hancock, J.R., Innis, T., Drury, C., Putnam, H.M., Gates, R.D., 2021. Coral bleaching response is unaltered following acclimatization to reefs with distinct environmental conditions. Proceedings of the National Academy of Sciences 118. https://doi.org/10.1073/pnas.2025435118 |
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
Birkeland, C., 1988. Geographic Comparisons of Coral-Reef Community Processes, Proceedings of the 6th International Coral Reef Symposium. |
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
Boulais, O., Schar, D., Levy, J., Kim, K., Levy, N., Reichert, J., Schiettekatte, N., Wangpraseurt, D., Madin, J., Thode, A., 2023. A demonstration of acoustic enrichment in Hawai’i using autonomous cameras for reef fish larval detection. Presented at the 185th Meeting of the Acoustical Society of America, Sydney, Australia, p. 010001. https://doi.org/10.1121/2.0001870 |
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
Brown, B.E., 1997. Coral bleaching: Causes and consequences. Coral Reefs 16. https://doi.org/10.1007/s003380050249 |
| [43] |
Buckley, M.L., Lowe, R.J., Hansen, J.E., Van Dongeren, A.R., Pomeroy, A., Storlazzi, C.D., Rijnsdorp, D.P., Da Silva, R.F., Contardo, S., Green, R.H., 2022. Wave‐Driven Hydrodynamic Processes Over Fringing Reefs With Varying Slopes, Depths, and Roughness: Implications for Coastal Protection. JGR Oceans 127, e2022JC018857. https://doi.org/10.1029/2022JC018857 |
| [44] |
|
| [45] |
Buerger, P., Alvarez-Roa, C., Coppin, C.W., Pearce, S.L., Chakravarti, L.J., Oakeshott, J.G., Edwards, O.R., van Oppen, M.J.H., 2020. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Science Advances 6. https://doi.org/10.1126/sciadv.aba2498 |
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
Cardini U, Bednarz VN, Foster RA, Wild C. Benthic N 2 fixation in coral reefs and the potential effects of human‐induced environmental change. Ecology and Evolution. 2014;4:1706–27. |
| [50] |
Cardini, U., Bednarz, V.N., Naumann, M.S., van Hoytema, N., Rix, L., Foster, R.A., Al-Rshaidat, M.M.D., Wild, C., 2015. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proceedings of the Royal Society B: Biological Sciences 282. https://doi.org/10.1098/rspb.2015.2257 |
| [51] |
Caruso, C., Hughes, K., Drury, C., 2021. Selecting Heat-Tolerant Corals for Proactive Reef Restoration. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.632027 |
| [52] |
Ceccarelli, D.M., Evans, R.D., Logan, M., Mantel, P., Puotinen, M., Petus, C., Russ, G.R., Williamson, D.H., 2020. Long-term dynamics and drivers of coral and macroalgal cover on inshore reefs of the Great Barrier Reef Marine Park. Ecological Applications 30. https://doi.org/10.1002/eap.2008 |
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
Chen, C.-N.N., Yong, T.C., Wang, J.-T., 2023. Symbiodiniaceae Cell Cloning from Corals: High Salinity Activates Endogenous Tolerance against the Bleaching Stress. |
| [59] |
Clark, S., Edwards, A.J., 1994. Use of Artificial Reef Structures to Rehabilitate Reef Flats Degraded by Coral Mining in the Maldives. |
| [60] |
|
| [61] |
Coffroth, M. A., Lasker, H. R. & Oliver, J. K. Coral Mortality Outside of the Eastern Pacific During 1982-1983: Relationship to El Niño. in Elsevier Oceanography Series. 1990;52:141–82. |
| [62] |
|
| [63] |
|
| [64] |
How Do We Restore Corals? [WWW Document], n.d. URL https://restorewithresilience.org/our-research (accessed 10.23.23). |
| [65] |
|
| [66] |
Cornwell, B., Armstrong, K., Walker, N.S., Lippert, M., Nestor, V., Golbuu, Y., Palumbi, S.R., 2021. Widespread variation in heat tolerance and symbiont load are associated with growth tradeoffs in the coral Acropora hyacinthus in Palau. eLife 10. https://doi.org/10.7554/eLife.64790 |
| [67] |
|
| [68] |
|
| [69] |
van Dam, J., Negri, A., Uthicke, S., Mueller, J., 2011. Chemical Pollution on Coral Reefs: Exposure and Ecological Effects, in: Chapter 9 In: Ecological Impacts of Toxic Chemicals, F. Sanchez-Bayo, P.J. van Den Brink and R.M. Mann (Eds.). Bentham Science Publisher: Ltd. https://doi.org/10.2174/978160805121210187 |
| [70] |
|
| [71] |
|
| [72] |
|
| [73] |
|
| [74] |
Dehnert, I., Saponari, L., Isa, V., Seveso, D., Galli, P., Montano, S., 2021. Exploring the performance of mid‐water lagoon nurseries for coral restoration in the Maldives. Restoration Ecology 30. https://doi.org/10.1111/rec.13600 |
| [75] |
|
| [76] |
|
| [77] |
|
| [78] |
|
| [79] |
|
| [80] |
|
| [81] |
|
| [82] |
|
| [83] |
|
| [84] |
|
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
|
| [89] |
|
| [90] |
|
| [91] |
|
| [92] |
|
| [93] |
|
| [94] |
Durack, P.J., Wijffels, S.E., Matear, R.J., 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. science 336, 455–458. |
| [95] |
|
| [96] |
|
| [97] |
|
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
|
| [102] |
Schuhmacher, H., 1977. Initial phases in reef development, studied at artificial reef types off Eilat, (Red Sea)::", Helgol~inder wiss. Meeresunters. |
| [103] |
Filbee-Dexter, K., Smajdor, A., 2019. Ethics of Assisted Evolution in Marine Conservation. Frontiers in Marine Science 6. https://doi.org/10.3389/fmars.2019.00020 |
| [104] |
|
| [105] |
|
| [106] |
|
| [107] |
Fournier, A., 2013. The story of symbiosis with zooxanthellae, or how they enable their host to thrive in a nutrient poor environment. Master Biosci Rev-Ec Norm Supérieure Lyon 8. |
| [108] |
|
| [109] |
|
| [110] |
Fuller, Z.L., Mocellin, V.J.L., Morris, L.A., Cantin, N., Shepherd, J., Sarre, L., Peng, J., Liao, Y., Pickrell, J., Andolfatto, P., Matz, M., Bay, L.K., Przeworski, M., 2020. Population genetics of the coral Acropora millepora: Toward genomic prediction of bleaching. Science 369. https://doi.org/10.1126/science.aba4674 |
| [111] |
|
| [112] |
|
| [113] |
|
| [114] |
|
| [115] |
|
| [116] |
|
| [117] |
Gornik, S.G., Maegele, I., Hambleton, E.A., Voss, P.A., Waller, R.F., Guse, A., 2022. Nuclear transformation of a dinoflagellate symbiont of corals. Frontiers in Marine Science 9. https://doi.org/10.3389/fmars.2022.1035413 |
| [118] |
|
| [119] |
|
| [120] |
|
| [121] |
|
| [122] |
|
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
|
| [128] |
|
| [129] |
|
| [130] |
|
| [131] |
|
| [132] |
|
| [133] |
|
| [134] |
|
| [135] |
|
| [136] |
|
| [137] |
|
| [138] |
Howard, L.S., Brown, B.E., 1984. Heavy Metals and Reef Corals, in: Oceanography and Marine Biology An Annual Review. CRC Press. |
| [139] |
|
| [140] |
|
| [141] |
|
| [142] |
|
| [143] |
Humanes, A., Beauchamp, E.A., Bythell, J.C., Carl, M.K., Craggs, J.R., Edwards, A.J., Golbuu, Y., Lachs, L., Martinez, H.M., Palmowski, P., Paysinger, F., Randle, J.L., van der Steeg, E., Sweet, M., Treumann, A., Guest, J.R., 2021. An Experimental Framework for Selectively Breeding Corals for Assisted Evolution. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.669995 |
| [144] |
|
| [145] |
|
| [146] |
|
| [147] |
Jackson, J.B.C., Donovan, M.K., Cramer, K.L., Lam, V.V. (Eds.), 2014. Status and Trends of Caribbean Coral Reefs 1970–2012. Global Coral Reef Monitoring Network. |
| [148] |
|
| [149] |
|
| [150] |
|
| [151] |
|
| [152] |
|
| [153] |
|
| [154] |
|
| [155] |
|
| [156] |
Jones, R., Mueller, J., Haynes, D., Schreiber, U., 2003. Effects of herbicides diuron and atrazine on corals of the Great Barrier Reef, Australia. Mar Ecol Prog Ser 251: 153–167. Marine Ecology Progress Series 251. https://doi.org/10.3354/meps251153 |
| [157] |
|
| [158] |
|
| [159] |
|
| [160] |
|
| [161] |
|
| [162] |
Knowlton, N., Brainard, R.E., Fisher, R., Moews, M., Plaisance, L., Caley, M.J., 2010. Coral Reef Biodiversity, in: Life in the World’s Oceans. pp. 65–78. https://doi.org/10.1002/9781444325508.ch4 |
| [163] |
|
| [164] |
|
| [165] |
|
| [166] |
|
| [167] |
|
| [168] |
|
| [169] |
|
| [170] |
|
| [171] |
|
| [172] |
|
| [173] |
|
| [174] |
|
| [175] |
Lange, C., Ratoi, L., Co, D.L., 2020. Reformative Coral Habitats - Rethinking Artificial Reef structures through a robotic 3D clay printing method. Presented at the CAADRIA 2020: RE:Anthropocene, Bangkok, Thailand, pp. 463–472. https://doi.org/10.52842/conf.caadria.2020.2.463 |
| [176] |
|
| [177] |
|
| [178] |
|
| [179] |
|
| [180] |
Lesser, M.P., 2011. Coral bleaching: causes and mechanisms. Coral reefs: an ecosystem in transition 405–419. |
| [181] |
|
| [182] |
|
| [183] |
|
| [184] |
Lewis DH. The relevance of symbiosis to taxonomy and ecology, with particular reference to mutualistic symbioses and the exploitation of marginal habitats. Taxonomy and ecology. 1973;151–172. |
| [185] |
|
| [186] |
|
| [187] |
|
| [188] |
Lough, J.M., Anderson, K.D., Hughes, T.P., 2018. Increasing thermal stress for tropical coral reefs: 1871–2017. Scientific Reports 8. https://doi.org/10.1038/s41598-018-24530-9 |
| [189] |
|
| [190] |
|
| [191] |
|
| [192] |
|
| [193] |
|
| [194] |
|
| [195] |
|
| [196] |
|
| [197] |
|
| [198] |
|
| [199] |
|
| [200] |
|
| [201] |
|
| [202] |
|
| [203] |
|
| [204] |
|
| [205] |
Miller, M.W., Latijnhouwers, K.R.W., Bickel, A., Mendoza‐Quiroz, S., Schick, M., Burton, K., Banaszak, A.T., 2022. Settlement yields in large‐scale in situ culture of Caribbean coral larvae for restoration. Restoration Ecology 30. https://doi.org/10.1111/rec.13512 |
| [206] |
De Mitcheson, Y.S., Erisman, B., 2012. Fishery and Biological Implications of Fishing Spawning Aggregations, and the Social and Economic Importance of Aggregating Fishes, in: Sadovy De Mitcheson, Y., Colin, P.L. (Eds.), Reef Fish Spawning Aggregations: Biology, Research and Management. Springer Netherlands, Dordrecht, pp. 225–284. https://doi.org/10.1007/978-94-007-1980-4_8 |
| [207] |
|
| [208] |
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral–microbiota interactions. FEMS Microbiology Reviews. 2023;47:fuad005 |
| [209] |
|
| [210] |
|
| [211] |
|
| [212] |
|
| [213] |
|
| [214] |
Munday PL, Jones GP, Pratchett MS, Williams AJ. Climate change and the future for coral reef fishes. Fish and Fisheries. 2008;9:261–85. |
| [215] |
|
| [216] |
Muscatine, L., Falkowski, P.G., Porter, J.W., Dubinsky, Z. Fate of Photosynthetic Fixed Carbon in Light- and Shade-Adapted Colonies of the Symbiotic Coral Stylophora pistillata. Proceedings of the Royal Society of London. Series B, Biological sciences. 1984;222:181–202. |
| [217] |
|
| [218] |
|
| [219] |
|
| [220] |
NOAA confirms 4th global coral bleaching event | National Oceanic and Atmospheric Administration [WWW Document], 2024. URL https://www.noaa.gov/news-release/noaa-confirms-4th-global-coral-bleaching-event (accessed 4.28.24). |
| [221] |
NOAA, 2017. Sea Urchins Chow Down to Save Hawaii Coral Reefs [WWW Document]. |
| [222] |
|
| [223] |
|
| [224] |
Oakley, C.A., Davy, S.K., 2018. Cell Biology of Coral Bleaching, in: van Oppen, M.J.H., Lough, J.M. (Eds.), Coral Bleaching: Patterns, Processes, Causes and Consequences. Springer International Publishing, Cham, pp. 189–211. https://doi.org/10.1007/978-3-319-75393-5_8 |
| [225] |
|
| [226] |
|
| [227] |
|
| [228] |
|
| [229] |
Oliver, E.C.J., Donat, M.G., Burrows, M.T., Moore, P.J., Smale, D.A., Alexander, L.V., Benthuysen, J.A., Feng, M., Sen Gupta, A., Hobday, A.J., Holbrook, N.J., Perkins-Kirkpatrick, S.E., Scannell, H.A., Straub, S.C., Wernberg, T., 2018. Longer and more frequent marine heatwaves over the past century. Nature Communications 9. https://doi.org/10.1038/s41467-018-03732-9 |
| [230] |
|
| [231] |
|
| [232] |
|
| [233] |
|
| [234] |
|
| [235] |
|
| [236] |
|
| [237] |
|
| [238] |
|
| [239] |
Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen Fixation Aligns with nifH Abundance and Expression in Two Coral Trophic Functional Groups. Front Microbiol. 2017;8:1187. |
| [240] |
|
| [241] |
|
| [242] |
|
| [243] |
|
| [244] |
|
| [245] |
Quigley, K. M., Randall, C.J., van Oppen, M.J.H., Bay, L.K., 2020. Assessing the role of historical temperature regime and algal symbionts on the heat tolerance of coral juveniles. Biology Open 9. https://doi.org/10.1242/bio.047316 |
| [246] |
Quigley, K.M., Marzonie, M., Ramsby, B., Abrego, D., Milton, G., van Oppen, M.J.H., Bay, L.K., 2021. Variability in Fitness Trade-Offs Amongst Coral Juveniles With Mixed Genetic Backgrounds Held in the Wild. Frontiers in Marine Science 8. https://doi.org/10.3389/fmars.2021.636177 |
| [247] |
|
| [248] |
|
| [249] |
|
| [250] |
|
| [251] |
Reaka-Kudla, M.L., Wilson, D.E., Wilson, E.O., 1997. Biodiversity II: Understanding and Protecting Our Biological Resources. Joseph Henry Press, Washington, D.C. https://doi.org/10.17226/4901 |
| [252] |
|
| [253] |
|
| [254] |
|
| [255] |
|
| [256] |
|
| [257] |
|
| [258] |
|
| [259] |
|
| [260] |
Roethig, T., Ochsenkuehn, M.A., van der Merwe, R., Roik, A., Voolstra, C.R., 2016. Response of Holobiont Compartments to Salinity Changes Indicates Osmoregulation of Scleractinian Corals. American Geophysical Union 2016, PC54B-2263. |
| [261] |
|
| [262] |
|
| [263] |
|
| [264] |
|
| [265] |
|
| [266] |
|
| [267] |
|
| [268] |
Roth, M.S., 2014. The engine of the reef: Photobiology of the coral-algal symbiosis. Frontiers in Microbiology 5. https://doi.org/10.3389/fmicb.2014.00422 |
| [269] |
|
| [270] |
|
| [271] |
Santoro, E.P., Borges, R.M., Espinoza, J.L., Freire, M., Messias, C.S.M.A., Villela, H.D.M., Pereira, L.M., Vilela, C.L.S., Rosado, J.G., Cardoso, P.M., 2021. Coral microbiome manipulation elicits metabolic and genetic restructuring to mitigate heat stress and evade mortality. Science Advances. 7:eabg3088–eabg3088. |
| [272] |
|
| [273] |
Schoepf, V., Stat, M., Falter, J.L., McCulloch, M.T., 2015. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment. Scientific Reports 5. https://doi.org/10.1038/srep17639 |
| [274] |
|
| [275] |
|
| [276] |
|
| [277] |
Shafir, S., Rinkevich, B., 2010. Integrated Long-Term Mid-Water Coral Nurseries: A Management Instrument Evolving into a Floating Ecosystem. University of Mauritius Research Journal 16. |
| [278] |
|
| [279] |
|
| [280] |
Silverman, J., Lazar, B., Cao, L., Caldeira, K., Erez, J., 2009. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophysical Research Letters 36. |
| [281] |
|
| [282] |
|
| [283] |
|
| [284] |
Smith, H.A., Brown, D.A., Arjunwadkar, C.V., Fulton, S.E., Whitman, T., Hermanto, B., Mastroianni, E., Mattocks, N., Smith, A.K., Harrison, P.L., Boström‐Einarsson, L., McLeod, I.M., Bourne, D.G., 2022. Removal of macroalgae from degraded reefs enhances coral recruitment. Restoration Ecology 30. https://doi.org/10.1111/rec.13624 |
| [285] |
|
| [286] |
|
| [287] |
Spies, Thomas A., 1998. Forest Structure: A Key to the Ecosystem. Proceedings of a workshop on Structure, Process, and Diversity in Successional Forests of Coastal British Columbia 72. |
| [288] |
|
| [289] |
|
| [290] |
Stanley, G.D., van de Schootbrugge, B., 2009. The Evolution of the Coral–Algal Symbiosis, in: Coral Bleaching: Patterns, Processes, Causes and Consequences. pp. 7–19. https://doi.org/10.1007/978-3-540-69775-6_2 |
| [291] |
Stat, M., Morris, E., Gates, R.D., Karl, D.M., 2008. Functional diversity in coral-dinoflagellate symbiosis. |
| [292] |
Stella, J.S., Pratchett, M.S., Hutchings, P.A., Jones, G.P., 2011. Coral-associated invertebrates: Diversity, ecological importance and vulnerability to disturbance, in: Oceanography and Marine Biology: An Annual Review. |
| [293] |
Stone, R.B., Pratt, H.L., Parker, R.O., Davis, G.E., 1979. A Comparison of Fish Populations on an Artificial and Natural Reef in the Florida Keys. |
| [294] |
|
| [295] |
|
| [296] |
|
| [297] |
|
| [298] |
|
| [299] |
|
| [300] |
|
| [301] |
|
| [302] |
|
| [303] |
|
| [304] |
|
| [305] |
Szabó, M., Larkum, A.W.D., Vass, I., 2020. A review: the role of reactive oxygen species in mass coral bleaching. Photosynthesis in algae: biochemical and physiological mechanisms 459–488. |
| [306] |
|
| [307] |
|
| [308] |
|
| [309] |
|
| [310] |
|
| [311] |
|
| [312] |
|
| [313] |
|
| [314] |
|
| [315] |
|
| [316] |
Virgen-Urcelay A, Donner SD. Increase in the extent of mass coral bleaching over the past half-century, based on an updated global database. PLoS ONE. 2023;18:e0281719. |
| [317] |
|
| [318] |
|
| [319] |
|
| [320] |
Wangpraseurt, D., Larkum, A.W.D., Ralph, P.J., Kühl, M., 2012. Light gradients and optical microniches in coral tissues. Front. Microbio. 3. https://doi.org/10.3389/fmicb.2012.00316 |
| [321] |
Wangpraseurt, D., Holm, J.B., Larkum, A.W.D., Pernice, M., Ralph, P.J., Suggett, D.J., Kühl, M., 2017. In vivo Microscale Measurements of Light and Photosynthesis during Coral Bleaching: Evidence for the Optical Feedback Loop? Front. Microbiol. 8. https://doi.org/10.3389/fmicb.2017.00059 |
| [322] |
Watanabe, A., Nakamura, T., 2019. Carbon Dynamics in Coral Reefs, in: Kuwae, T., Hori, M. (Eds.), Blue Carbon in Shallow Coastal Ecosystems. Springer Singapore, Singapore, pp. 273–293. https://doi.org/10.1007/978-981-13-1295-3_10 |
| [323] |
|
| [324] |
|
| [325] |
|
| [326] |
|
| [327] |
|
| [328] |
|
| [329] |
|
| [330] |
|
| [331] |
|
/
| 〈 |
|
〉 |