Decoding the genetic blueprint: regulation of key agricultural traits in sorghum

Fangyuan Liu, Baye Wodajo, Peng Xie

Advanced Biotechnology ›› 2024, Vol. 2 ›› Issue (4) : 31. DOI: 10.1007/s44307-024-00039-3

Decoding the genetic blueprint: regulation of key agricultural traits in sorghum

Author information +
History +

Abstract

Sorghum, the fifth most important crop globally, thrives in challenging environments such as arid, saline-alkaline, and infertile regions. This remarkable crop, one of the earliest crops domesticated by humans, offers high biomass and stress-specific properties that render it suitable for a variety of uses including food, feed, bioenergy, and biomaterials. What’s truly exciting is the extensive phenotypic variation in sorghum, particularly in traits related to growth, development, and stress resistance. This inherent adaptability makes sorghum a game-changer in agriculture. However, tapping into sorghum’s full potential requires unraveling the complex genetic networks that govern its key agricultural traits. Understanding these genetic mechanisms is paramount for improving traits such as yield, quality, and tolerance to drought and saline-alkaline conditions. This review provides a comprehensive overview of functionally characterized genes and regulatory networks associated with plant and panicle architectures, as well as stress resistance in sorghum. Armed with this knowledge, we can develop more resilient and productive sorghum varieties through cutting-edge breeding techniques like genome-wide selection, gene editing, and synthetic biology. These approaches facilitate the identification and manipulation of specific genes responsible for desirable traits, ultimately enhancing agricultural performance and adaptability in sorghum.

Keywords

Sorghum / Growth and development / Stress resistance / Functional genes / Regulatory networks / Molecular breeding

Cite this article

Download citation ▾
Fangyuan Liu, Baye Wodajo, Peng Xie. Decoding the genetic blueprint: regulation of key agricultural traits in sorghum. Advanced Biotechnology, 2024, 2(4): 31 https://doi.org/10.1007/s44307-024-00039-3

References

[1]
Abdul-Awal SM, Chen J, Xin Z, Harmon FG. A sorghum gigantea mutant attenuates florigen gene expression and delays flowering time. Plant Direct. 2020. https://doi.org/10.1002/pld3.281.
[2]
Abreha KB, Enyew M, Carlsson AS, Vetukuri RR, Feyissa T, Motlhaodi T, Ng’uni D, Geleta M. Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress. Planta. 2021. https://doi.org/10.1007/s00425-021-03799-7.
[3]
Acosta IF, Laparra H, Romero SP, Schmelz E, Hamberg M, Mottinger JP, Moreno MA, Dellaporta SL. tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize. Science. 2009. https://doi.org/10.1126/science.1164645.
[4]
Adeyanju A, Perumal R, Tesso T. Genetic analysis of threshability in grain sorghum [Sorghum bicolor (L.) Moench]. Plant Breeding. 2015. https://doi.org/10.1111/pbr.12244.
[5]
Adeyanju AO, Sattler SE, Rich PJ, Rivera-Burgos LA, Xu X, Ejeta G. Sorghum brown Midrib19 (Bmr19) gene links lignin biosynthesis to folate metabolism. Genes (Basel). 2021. https://doi.org/10.3390/genes12050660.
[6]
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv. 2023. https://doi.org/10.1016/j.biotechadv.2023.108248.
[7]
Aregawi K, Shen J, Pierroz G, Sharma MK, Dahlberg J, Owiti J, Lemaux PG. Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing. Plant Biotechnol J. 2022. https://doi.org/10.1111/pbi.13754.
[8]
Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production. Science. 2005. https://doi.org/10.1126/science.1113373.
[9]
AuBuchon-Elder T, Coneva V, Goad DM, Jenkins LM, Yu Y, Allen DK, Kellogg EA. Sterile spikelets contribute to yield in sorghum and related grasses. Plant Cell. 2020. https://doi.org/10.1105/tpc.20.00424.
[10]
Awio B, Habyarimana E, Kumar MVN, Kumar AA, Chary DS, Sharma R. Identification of disease resistant bmr sorghum recombinant inbred lines derived from diverse donor and recurrent parents. Crop Prot. 2024. https://doi.org/10.1016/j.cropro.2024.106630.
[11]
Barrero Farfan ID, Bergsma BR, Johal G, Tuinstra MR. A stable dw3 allele in sorghum and a molecular marker to facilitate selection. Crop Sci. 2012. https://doi.org/10.2135/cropsci2011.12.0631.
[12]
Barros VA, Chandnani R, De Sousa SM, Maciel LS, Tokizawa M, Guimaraes CT, Magalhaes JV, Kochian LV. Root adaptation via common genetic factors conditioning tolerance to multiple stresses for crops cultivated on acidic tropical soils. Front Plant Sci. 2020. https://doi.org/10.3389/fpls.2020.565339.
[13]
Bhosale SU, Stich B, Rattunde HF, Weltzien E, Haussmann BI, Hash CT, Ramu P, Cuevas HE, Paterson AH, Melchinger AE, Parzies HK. Association analysis of photoperiodic flowering time genes in west and central African sorghum [Sorghum bicolor (L.) Moench]. BMC Plant Biol. 2012. https://doi.org/10.1186/1471-2229-12-32.
[14]
Boyles RE, Pfeiffer BK, Cooper EA, Zielinski KJ, Myers MT, Rooney WL, Kresovich S. Quantitative trait loci mapping of agronomic and yield traits in two grain sorghum biparental families. Crop Sci. 2017. https://doi.org/10.2135/cropsci2016.12.0988.
[15]
Brant EJ, Baloglu MC, Parikh A, Altpeter F. CRISPR/Cas9 mediated targeted mutagenesis of LIGULELESS-1 in sorghum provides a rapidly scorable phenotype by altering leaf inclination angle. Biotechnol J. 2021. https://doi.org/10.1002/biot.202100237.
[16]
Burks PS, Kaiser CM, Hawkins EM, Brown PJ. Genomewide association for sugar yield in sweet sorghum. Crop Sci. 2015. https://doi.org/10.2135/cropsci2015.01.0057.
[17]
Calderon-Urrea A, Dellaporta SL. Cell death and cell protection genes determine the fate of pistils in maize. Development. 1999. https://doi.org/10.1242/dev.126.3.435.
[18]
Casto AL, Mattison AJ, Olson SN, Thakran M, Rooney WL, Mullet JE. Maturity2, a novel regulator of flowering time in Sorghum bicolor, increases expression of SbPRR37 and SbCO in long days delaying flowering. PLoS One. 2019. https://doi.org/10.1371/journal.pone.0212154.
[19]
Chakrabarty S, Kravcov N, Schaffasz A, Snowdon RJ, Wittkop B, Windpassinger S. Genetic architecture of novel sources for reproductive cold tolerance in Sorghum. Front Plant Sci. 2021. https://doi.org/10.3389/fpls.2021.772177.
[20]
Chan KY. Climate change on soil structure and soil health: impacts and adaptation. Soil Health and Climate Change, 2011 49-67,
CrossRef Google scholar
[21]
Che P, Anand A, Wu E, Sander JD, Simon MK, Zhu WW, Sigmund AL, Zastrow-Hayes G, Miller M, Liu DL, Lawit SJ, Zhao ZY, Albertsen MC, Jones TJ. Developing a flexible, high-efficiency Agrobacterium-mediated sorghum transformation system with broad application. Plant Biotechnol J. 2018. https://doi.org/10.1111/pbi.12879.
[22]
Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol. 1997. https://doi.org/10.1104/pp.113.2.611.
[23]
Cobb JN, Biswas PS, Platten JD. Back to the future: revisiting MAS as a tool for modern plant breeding. Theor Appl Genet. 2019. https://doi.org/10.1007/s00122-018-3266-4.
[24]
Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y, Dreisigacker S, Singh R, Zhang XC, Gowda M, Roorkiwal M, Rutkoski J, Varshney RK. Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci. 2017. https://doi.org/10.1016/j.tplants.2017.08.011.
[25]
Cuevas HE, Zhou C, Tang H, Khadke PP, Das S, Lin YR, Ge Z, Clemente T, Upadhyaya HD, Hash CT, Paterson AH. The evolution of photoperiod-insensitive flowering in sorghum, a genomic model for panicoid grasses. Mol Biol Evol. 2016. https://doi.org/10.1093/molbev/msw120.
[26]
Dampanaboina L, Jiao Y, Chen J, Gladman N, Chopra R, Burow G, Hayes C, Christensen SA, Burke J, Ware D, Xin Z. Sorghum MSD3 encodes an ω-3 fatty acid desaturase that increases grain number by reducing jasmonic acid levels. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20215359.
[27]
de Oliveira AA, Pastina MM, de Souza VF, Parrella RAD, Noda RW, Simeone MLF, Schaffert RE, de Magalhes JV, Damasceno CMB, Margarido GRA. Genomic prediction applied to high-biomass sorghum for bioenergy production Mol Breed. 2018. https://doi.org/10.1007/s11032-018-0802-5.
[28]
Desta KT, Choi YM, Shin MJ, Yoon H, Wang X, Lee Y, Yi J, Jeon YA, Lee S. Comprehensive evaluation of nutritional components, bioactive metabolites, and antioxidant activities in diverse sorghum (Sorghum bicolor (L.) Moench) landraces. Food Res Int. 2023. https://doi.org/10.1016/j.foodres.2023.113390.
[29]
Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 2004. https://doi.org/10.1101/gad.1189604.
[30]
Elbaum R, Zaltzman L, Burgert I, Fratzl P. The role of wheat awns in the seed dispersal unit. Science. 2007. https://doi.org/10.1126/science.1140097.
[31]
Eudes A, Dutta T, Deng K, Jacquet N, Sinha A, Benites VT, Baidoo EEK, Richel A, Sattler SE, Northen TR, Singh S, Simmons BA, Loqué D. SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in sorghum. PLoS One. 2017. https://doi.org/10.1371/journal.pone.0178160.
[32]
FAOSTAT. Food and Agriculture Organization Statistics[EB/OL]. 2021. https://www.fao.org/faostat/en/#data/QCL/visualize. Accessed 25 Feb 2021.
[33]
FAOSTAT. Food and agricultural organization statistics[EB/OL]. 2022. http://www.fao.org/faostat/en/#data/QC. Accessed 1 Nov 2022.
[34]
Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH. Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet. 2006. https://doi.org/10.1007/s00122-006-0232-3.
[35]
Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science. 1999. https://doi.org/10.1126/science.283.5409.1911.
[36]
Fujimoto M, Sazuka T, Oda Y, Kawahigashi H, Wu J, Takanashi H, Ohnishi T, Yoneda JI, Ishimori M, Kajiya-Kanegae H, Hibara KI, Ishizuna F, Ebine K, Ueda T, Tokunaga T, Iwata H, Matsumoto T, Kasuga S, Yonemaru JI, Tsutsumi N. Transcriptional switch for programmed cell death in pith parenchyma of sorghum stems. Proc Natl Acad Sci U S A. 2018. https://doi.org/10.1073/pnas.1807501115.
[37]
Fuller DQ. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot. 2007. https://doi.org/10.1093/aob/mcm048.
[38]
Gao J, Yan S, Yu H, Zhan M, Guan K, Wang Y, Yang Z. Sweet sorghum (Sorghum bicolor L.) SbSTOP1 activates the transcription of a β-1, 3-glucanase gene to reduce callose deposition under Al toxicity: a novel pathway for Al tolerance in plants. Biosci Biotechnol Biochem. 2019. https://doi.org/10.1080/09168451.2018.1540290.
[39]
Gao J, Liang Y, Li J, Wang S, Zhan M, Zheng M, Li H, Yang Z. Identification of a bacterial-type ATP-binding cassette transporter implicated in aluminum tolerance in sweet sorghum (Sorghum bicolor L.). Plant Signal Behav. 2021. https://doi.org/10.1080/15592324.2021.1916211.
[40]
Ge FY, Xie P, Wu YR, Xie Q. Genetic architecture and molecular regulation of sorghum domestication. Abiotech. 2023. https://doi.org/10.1007/s42994-022-00089-y.
[41]
Geisen S, Krishnaswamy K, Myers R. Physical and structural characterization of underutilized climate-resilient seed grains: millets, sorghum, and amaranth. Front Sustain Food Syst. 2021. https://doi.org/10.3389/fsufs.2021.599656.
[42]
George-Jaeggli B, Jordan DR, van Oosterom EJ, Hammer GL. Decrease in sorghum grain yield due to the dw3 dwarfing gene is caused by reduction in shoot biomass. Field Crops Res. 2011. https://doi.org/10.1016/j.fcr.2011.07.005.
[43]
George-Jaeggli B, Jordan D, Van Oosterom E, Broad IJ, Hammer G. Sorghum dwarfing genes can affect radiation capture and radiation use efficiency. Field Crops Res. 2013. https://doi.org/10.1016/j.fcr.2013.05.005.
[44]
Gladman N, Jiao Y, Lee YK, Zhang L, Chopra R, Regulski M, Burow G, Hayes C, Christensen SA, Dampanaboina L, Chen J, Burke J, Ware D, Xin Z. Fertility of pedicellate spikelets in sorghum is controlled by a jasmonic acid regulatory module. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20194951.
[45]
Guan K, Yang Z, Zhan M, Zheng M, You J, Meng X, Li H, Gao J. Two Sweet Sorghum (Sorghum bicolor L.) WRKY transcription factors promote aluminum tolerance via the reduction in callose deposition. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241210288.
[46]
Gui J, Liu C, Shen J, Li L. Grain setting defect1, encoding a remorin protein, affects the grain setting in rice through regulating plasmodesmatal conductance. Plant Physiol. 2014. https://doi.org/10.1104/pp.114.246769.
[47]
Habyarimana E, Lopez-Cruz M. Genomic selection for antioxidant production in a panel of Sorghum bicolor and S. bicolor x S. halepense lines. Genes. 2019. https://doi.org/10.3390/genes10110841.
[48]
Han L, Chen J, Mace ES, Liu Y, Zhu M, Yuyama N, Jordan DR, Cai H. Fine mapping of qGW1, a major QTL for grain weight in sorghum. Theor Appl Genet. 2015. https://doi.org/10.1007/s00122-015-2549-2.
[49]
Hashimoto S, Wake T, Nakamura H, Minamiyama M, Araki-Nakamura S, Ohmae-Shinohara K, Koketsu E, Okamura S, Miura K, Kawaguchi H, Kasuga S, Sazuka T. The dominance model for heterosis explains culm length genetics in a hybrid sorghum variety. Sci Rep. 2021. https://doi.org/10.1038/s41598-021-84020-3.
[50]
Hilley J, Truong S, Olson S, Morishige D, Mullet J. Identification of Dw1, a regulator of sorghum stem internode length. PLoS One. 2016. https://doi.org/10.1371/journal.pone.0151271.
[51]
Hilley JL, Weers BD, Truong SK, McCormick RF, Mattison AJ, McKinley BA, Morishige DT, Mullet JE. Sorghum Dw2 encodes a protein kinase regulator of stem internode length. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-04609-5.
[52]
Hirano K, Kawamura M, Araki-Nakamura S, Fujimoto H, Ohmae-Shinohara K, Yamaguchi M, Fujii A, Sasaki H, Kasuga S, Sazuka T. Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-00096-w.
[53]
Huang R-d. Research progress on plant tolerance to soil salinity and alkalinity in sorghum. J Integr Agric. 2018. https://doi.org/10.1016/S2095-3119(17)61728-3.
[54]
Itoh H, Nonoue Y, Yano M, Izawa T. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet. 2010. https://doi.org/10.1038/ng.606.
[55]
Jiao Y, Lee YK, Gladman N, Chopra R, Christensen SA, Regulski M, Burow G, Hayes C, Burke J, Ware D, Xin Z. MSD1 regulates pedicellate spikelet fertility in sorghum through the jasmonic acid pathway. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-03238-4.
[56]
Jin X, Zheng Y, Wang J, Chen W, Yang Z, Chen Y, Yang Y, Lu G, Sun B. SbNAC9 improves drought tolerance by enhancing scavenging ability of reactive oxygen species and activating stress-responsive genes of sorghum. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms24032401.
[57]
Kebrom TH, Brutnell TP, Finlayson SA. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways. Plant Cell Environ. 2010. https://doi.org/10.1111/j.1365-3040.2009.02050.x.
[58]
Kebrom TH, McKinley B, Mullet JE. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum. Biotechnol Biofuels. 2017. https://doi.org/10.1186/s13068-017-0848-3.
[59]
Kim JC, Laparra H, Calderón-Urrea A, Mottinger JP, Moreno MA, Dellaporta SL. Cell cycle arrest of stamen initials in maize sex determination. Genetics. 2007. https://doi.org/10.1534/genetics.107.082446.
[60]
Kislev ME, Weiss E, Hartmann A. Impetus for sowing and the beginning of agriculture: ground collecting of wild cereals. Proc Natl Acad Sci U S A. 2004. https://doi.org/10.1073/pnas.0308739101.
[61]
Kong W, Guo H, Goff VH, Lee TH, Kim C, Paterson AH. Genetic analysis of vegetative branching in sorghum. Theor Appl Genet. 2014. https://doi.org/10.1007/s00122-014-2384-x.
[62]
Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science. 2006. https://doi.org/10.1126/science.1126410.
[63]
Laza HE, Kaur-Kapoor H, Xin Z, Payton PR, Chen J. Morphological analysis and stage determination of anther development in Sorghum [Sorghum bicolor (L.) Moench]. Planta. 2022. https://doi.org/10.1007/s00425-022-03853-y.
[64]
Lazakis CM, Coneva V, Colasanti J. ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. J Exp Bot. 2011. https://doi.org/10.1093/jxb/err129.
[65]
Li C, Zhou A, Sang T. Genetic analysis of rice domestication syndrome with the wild annual species, Oryza nivara. New Phytol. 2006. https://doi.org/10.1111/j.1469-8137.2005.01647.x.
[66]
Li X, Li X, Fridman E, Tesso TT, Yu J. Dissecting repulsion linkage in the dwarfing gene Dw3 region for sorghum plant height provides insights into heterosis. Proc Natl Acad Sci U S A. 2015. https://doi.org/10.1073/pnas.1509229112.
[67]
Li A, Jia S, Yobi A, Ge Z, Sato SJ, Zhang C, Angelovici R, Clemente TE, Holding DR. Editing of an alpha-kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiol. 2018. https://doi.org/10.1104/pp.18.00200.
[68]
Li J, Pan W, Zhang S, Ma G, Li A, Zhang H, Liu L. A rapid and highly efficient sorghum transformation strategy using GRF4-GIF1/ternary vector system. Plant J. 2024. https://doi.org/10.1111/tpj.16575.
[69]
Lin Z, Li X, Shannon LM, Yeh CT, Wang ML, Bai G, Peng Z, Li J, Trick HN, Clemente TE, Doebley J, Schnable PS, Tuinstra MR, Tesso TT, White F, Yu J. Parallel domestication of the Shattering1 genes in cereals. Nat Genet. 2012. https://doi.org/10.1038/ng.2281.
[70]
Liu J, Magalhaes JV, Shaff J, Kochian LV. Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance. Plant J. 2009. https://doi.org/10.1111/j.1365-313X.2008.03696.x.
[71]
Liu H, Liu H, Zhou L, Zhang Z, Zhang X, Wang M, Li H, Lin Z. Parallel domestication of the heading date 1 gene in cereals. Mol Biol Evol. 2015. https://doi.org/10.1093/molbev/msv148.
[72]
Liu G, Gilding EK, Kerr ED, Schulz BL, Tabet B, Hamaker BR, Godwin ID. Increasing protein content and digestibility in sorghum grain with a synthetic biology approach. J Cereal Sci. 2019a. https://doi.org/10.1016/j.jcs.2018.11.001.
[73]
Liu G, Li J, Godwin ID. Genome editing by CRISPR/Cas9 in sorghum through biolistic bombardment. Sorghum Methods Protoc. 2019b. https://doi.org/10.1007/978-1-4939-9039-9_12.
[74]
Liu F, Baye W, Zhao K, Tang S, Xie Q, Xie P. Unravelling sorghum functional genomics and molecular breeding: past achievements and future prospects. J Genet Genomics. 2024. https://doi.org/10.1016/j.jgg.2024.07.016.
[75]
Lozano AC, Ding HT, Abe N, Lipka AE. Regularized multi-trait multi-locus linear mixed models for genome-wide association studies and genomic selection in crops. Bmc Bioinformatics. 2023. https://doi.org/10.1186/s12859-023-05519-2.
[76]
Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt CH, Wang X, Shatte T, Wang M, Su Z, Wang J. Whole-genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun. 2013. https://doi.org/10.1038/ncomms3320.
[77]
Magalhaes JV, Liu J, Guimaraes CT, Lana UG, Alves VM, Wang Y-H, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE. A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet. 2007. https://doi.org/10.1038/ng2074.
[78]
Makita Y, Shimada S, Kawashima M, Kondou-Kuriyama T, Toyoda T, Matsui M. MOROKOSHI: transcriptome database in Sorghum bicolor. Plant Cell Physiol. 2015. https://doi.org/10.1093/pcp/pcu187.
[79]
Melo JO, Martins LG, Barros BA, Pimenta MR, Lana UG, Duarte CE, Pastina MM, Guimaraes CT, Schaffert RE, Kochian LV. Repeat variants for the SbMATE transporter protect sorghum roots from aluminum toxicity by transcriptional interplay in cis and trans. Proc Natl Acad Sci. 2019. https://doi.org/10.1073/pnas.1808400115.
[80]
Meng X, Muszynski MG, Danilevskaya ON. The FT-like ZCN8 gene functions as a floral activator and is involved in photoperiod sensitivity in maize. Plant Cell. 2011. https://doi.org/10.1105/tpc.110.081406.
[81]
Mullet J, Morishige D, McCormick R, Truong S, Hilley J, McKinley B, Anderson R, Olson SN, Rooney W. Energy sorghum–a genetic model for the design of C4 grass bioenergy crops. J Exp Bot. 2014. https://doi.org/10.1093/jxb/eru229.
[82]
Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science. 2003. https://doi.org/10.1126/science.1086072.
[83]
Murphy RL, Klein RR, Morishige DT, Brady JA, Rooney WL, Miller FR, Dugas DV, Klein PE, Mullet JE. Coincident light and clock regulation of pseudoresponse regulator protein 37 (PRR37) controls photoperiodic flowering in sorghum. Proc Natl Acad Sci U S A. 2011. https://doi.org/10.1073/pnas.1106212108.
[84]
Murphy RL, Morishige DT, Brady JA, Rooney WL, Yang S, Klein PE, Mullet JE. Ghd7 (Ma6) represses sorghum flowering in long days: Ghd7 alleles enhance biomass accumulation and grain production. Plant Genome. 2014. https://doi.org/10.3835/plantgenome2013.11.0040.
[85]
Murray SC, Rooney WL, Mitchell SE, Sharma A, Klein PE, Mullet JE, Kresovich S. Genetic improvement of sorghum as a biofuel feedstock: II. QTL for stem and leaf structural carbohydrates. Crop Sci. 2008. https://doi.org/10.2135/cropsci2008.01.0068.
[86]
Nagaraja Reddy R, Madhusudhana R, Murali Mohan S, Chakravarthi DV, Mehtre SP, Seetharama N, Patil JV. Mapping QTL for grain yield and other agronomic traits in post-rainy sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet. 2013. https://doi.org/10.1007/s00122-013-2107-8.
[87]
Nozue K, Covington MF, Duek PD, Lorrain S, Fankhauser C, Harmer SL, Maloof JN. Rhythmic growth explained by coincidence between internal and external cues. Nature. 2007. https://doi.org/10.1038/nature05946.
[88]
Oliver J, Fan M, McKinley B, Zemelis-Durfee S, Brandizzi F, Wilkerson C, Mullet JE. The AGCVIII kinase Dw2 modulates cell proliferation, endomembrane trafficking, and MLG/xylan cell wall localization in elongating stem internodes of Sorghum bicolor. Plant J. 2021. https://doi.org/10.1111/tpj.15086.
[89]
Olson SN, Ritter K, Rooney W, Kemanian A, McCarl BA, Zhang Y, Hall S, Packer D, Mullet J. High biomass yield energy sorghum: developing a genetic model for C4 grass bioenergy crops. Biofuel Bioprod Biorefinin. 2012. https://doi.org/10.1002/bbb.1357.
[90]
Ordonio RL, Ito Y, Hatakeyama A, Ohmae-Shinohara K, Kasuga S, Tokunaga T, Mizuno H, Kitano H, Matsuoka M, Sazuka T. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding. Sci Rep. 2014. https://doi.org/10.1038/srep05287.
[91]
Pereira M, Ahnert D, Lee M, Klier K. . Genetic mapping of quantitative trait loci for panicle characteristics and seed weight in sorghum, 1995
[92]
Rajkumar, Fakrudin B, Kavil SP, Girma Y, Arun SS, Dadakhalandar D, Gurusiddesh BH, Patil AM, Thudi M, Bhairappanavar SB, Narayana YD, Krishnaraj PU, Khadi BM, Kamatar MY. Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum (Sorghum bicolor L. Moench). Physiol Mol Biol Plants. 2013. https://doi.org/10.1007/s12298-013-0188-0.
[93]
Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S. Multiple pathways regulate shoot branching. Front Plant Sci. 2014. https://doi.org/10.3389/fpls.2014.00741.
[94]
Rice B, Lipka AE. Evaluation of RR-BLUP genomic selection models that incorporate peak genome-wide association study signals in maize and sorghum. Plant Genome. 2019. https://doi.org/10.3835/plantgenome2018.07.0052.
[95]
Rooney WL. Sorghum improvement-integrating traditional and new technology to produce improved genotypes. Adv Agron. 2004. https://doi.org/10.1016/S0065-2113(04)83002-5.
[96]
Saballos A, Vermerris W, Rivera L, Ejeta G. Allelic association, chemical characterization and saccharification properties of brown midrib mutants of sorghum (Sorghum bicolor (L.) Moench). Bioenergy Res. 2008. https://doi.org/10.1007/s12155-008-9025-7.
[97]
Saballos A, Sattler SE, Sanchez E, Foster TP, Xin Z, Kang C, Pedersen JF, Vermerris W. Brown midrib2 (Bmr2) encodes the major 4-coumarate:coenzyme A ligase involved in lignin biosynthesis in sorghum (Sorghum bicolor (L.) Moench). Plant J. 2012. https://doi.org/10.1111/j.1365-313X.2012.04933.x.
[98]
Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M. Phytohormone signaling and crosstalk in regulating drought stress response in plants. Plant Cell Rep. 2021. https://doi.org/10.1007/s00299-021-02683-8.
[99]
Sander JD. Gene editing in sorghum. Through Agrobacterium. Sorghum Methods Protoc. 2019. https://doi.org/10.1007/978-1-4939-9039-9_11.
[100]
Sapkota S, Boatwright JL, Kumar N, Myers M, Cox A, Ackerman A, Caughman W, Brenton ZW, Boyles RE, Kresovich S. Genomic prediction of hybrid performance for agronomic traits in sorghum. G3 (Bethesda). 2023. https://doi.org/10.1093/g3journal/jkac311.
[101]
Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature. 2006. https://doi.org/10.1038/nature04725.
[102]
Sattler SE, Saathoff AJ, Haas EJ, Palmer NA, Funnell-Harris DL, Sarath G, Pedersen JF. A nonsense mutation in a cinnamyl alcohol dehydrogenase gene is responsible for the Sorghum brown midrib6 phenotype. Plant Physiol. 2009. https://doi.org/10.1104/pp.109.136408.
[103]
Scully ED, Gries T, Funnell-Harris DL, Xin Z, Kovacs FA, Vermerris W, Sattler SE. Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. J Integr Plant Biol. 2016. https://doi.org/10.1111/jipb.12375.
[104]
Shenkutie SM, Nagano S, Hughes J. Expression, purification and crystallization of the photosensory module of phytochrome B (phyB) from Sorghum bicolor. Acta Crystallogr F Struct Biol Commun. 2024. https://doi.org/10.1107/s2053230x24000827.
[105]
Silva TN, Thomas JB, Dahlberg J, Rhee SY, Mortimer JC. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. J Exp Bot. 2022. https://doi.org/10.1093/jxb/erab450.
[106]
Somegowda VK, Diwakar Reddy S, Gaddameedi A, Kiranmayee K, Naravula J, Kavi Kishor P, Penna S. Genomics breeding approaches for developing Sorghum bicolor lines with stress resilience and other agronomic traits. Curr Plant Biol. 2024. https://doi.org/10.1016/j.cpb.2023.100314.
[107]
Song Y, Zheng H, Sui Y, Li S, Wu F, Sun X, Sui N. SbWRKY55 regulates sorghum response to saline environment by its dual role in abscisic acid signaling. Theor Appl Genet. 2022. https://doi.org/10.1007/s00122-022-04130-y.
[108]
Srinivas G, Satish K, Madhusudhana R, Reddy RN, Mohan SM, Seetharama N. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet. 2009. https://doi.org/10.1007/s00122-009-0993-6.
[109]
Su M, Li X-F, Ma X-Y, Peng X-J, Zhao A-G, Cheng L-Q, Chen S-Y, Liu G-S. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Sci. 2011. https://doi.org/10.1016/j.plantsci.2011.03.002.
[110]
Sukumaran S, Li X, Li X, Zhu C, Bai G, Perumal R, Tuinstra MR, Prasad PV, Mitchell SE, Tesso TT. QTL mapping for grain yield, flowering time, and stay-green traits in sorghum with genotyping-by-sequencing markers. Crop Sci. 2016. https://doi.org/10.2135/cropsci2015.02.0097.
[111]
Sun S, Wang L, Mao H, Shao L, Li X, Xiao J, Ouyang Y, Zhang Q. A G-protein pathway determines grain size in rice. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-03141-y.
[112]
Takanashi H, Kajiya-Kanegae H, Nishimura A, Yamada J, Ishimori M, Kobayashi M, Yano K, Iwata H, Tsutsumi N, Sakamoto W. DOMINANT AWN INHIBITOR encodes the ALOG protein originating from gene duplication and inhibits AWN elongation by suppressing cell proliferation and elongation in sorghum. Plant Cell Physiol. 2022. https://doi.org/10.1093/pcp/pcac057.
[113]
Tang H, Cuevas HE, Das S, Sezen UU, Zhou C, Guo H, Goff VH, Ge Z, Clemente TE, Paterson AH. Seed shattering in a wild sorghum is conferred by a locus unrelated to domestication. Proc Natl Acad Sci U S A. 2013. https://doi.org/10.1073/pnas.1305213110.
[114]
Tao Y, Mace ES, Tai S, Cruickshank A, Campbell BC, Zhao X, Van Oosterom EJ, Godwin ID, Botella JR, Jordan DR. Whole-genome analysis of candidate genes associated with seed size and weight in Sorghum bicolor reveals signatures of artificial selection and insights into parallel domestication in cereal crops. Front Plant Sci. 2017. https://doi.org/10.3389/fpls.2017.01237.
[115]
Tao Y, Mace E, George-Jaeggli B, Hunt C, Cruickshank A, Henzell R, Jordan D. Novel grain weight loci revealed in a cross between cultivated and wild sorghum. Plant Genome. 2018. https://doi.org/10.3835/plantgenome2017.10.0089.
[116]
Tao Y, Zhao X, Wang X, Hathorn A, Hunt C, Cruickshank AW, van Oosterom EJ, Godwin ID, Mace ES, Jordan DR. Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnol J. 2020. https://doi.org/10.1111/pbi.13284.
[117]
Tao Y, Trusov Y, Zhao X, Wang X, Cruickshank AW, Hunt C, van Oosterom EJ, Hathorn A, Liu G, Godwin ID, Botella JR, Mace ES, Jordan DR. Manipulating assimilate availability provides insight into the genes controlling grain size in sorghum. Plant J. 2021. https://doi.org/10.1111/tpj.15437.
[118]
Tetreault HM, Gries T, Liu S, Toy J, Xin Z, Vermerris W, Ralph J, Funnell-Harris DL, Sattler SE. The sorghum (Sorghum bicolor) brown Midrib 30 gene encodes a chalcone isomerase required for cell wall lignification. Front Plant Sci. 2021. https://doi.org/10.3389/fpls.2021.732307.
[119]
Tian Y, Lin CY, Park JH, Wu CY, Kakumanu R, Pidatala VR, Vuu KM, Rodriguez A, Shih PM, Baidoo EEK, Temple S, Simmons BA, Gladden JM, Scheller HV, Eudes A. Overexpression of the rice BAHD acyltransferase AT10 increases xylan-bound p-coumarate and reduces lignin in Sorghum bicolor. Biotechnol Biofuels. 2021. https://doi.org/10.1186/s13068-021-02068-9.
[120]
Tiwari S, Lata C, Chauhan PS, Prasad V, Prasad M. A functional genomic perspective on drought signaling and its crosstalk with phytohormone-mediated signalling pathways in plants. Curr Genomics. 2017. https://doi.org/10.2174/1389202918666170605083319.
[121]
Tsuji H, Taoka K, Shimamoto K. Regulation of flowering in rice: two florigen genes, a complex gene network, and natural variation. Curr Opin Plant Biol. 2011. https://doi.org/10.1016/j.pbi.2010.08.016.
[122]
USDA. U.S. Department of Agriculture[EB/OL]. 2020. https://data.nal.usda.gov/dataset/feed-grains. Accessed 26 June 2022.
[123]
Velazco JG, Jordan DR, Mace ES, Hunt CH, Malosetti M, van Eeuwijk FA. Genomic prediction of grain yield and drought-adaptation capacity in sorghum is enhanced by multi-trait analysis. Front Plant Sci. 2019a. https://doi.org/10.3389/fpls.2019.00997.
[124]
Velazco JG, Malosetti M, Hunt CH, Mace ES, Jordan DR, van Eeuwijk FA. Combining pedigree and genomic information to improve prediction quality: an example in sorghum. Theor Appl Genet. 2019b. https://doi.org/10.1007/s00122-019-03337-w.
[125]
Wang Z, Zhang Z, Zheng D, Zhang T, Li X, Zhang C, Yu R, Wei J, Wu Z. Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. J Integr Plant Biol. 2022. https://doi.org/10.1111/jipb.13263.
[126]
Wang G, Long Y, Jin X, Yang Z, Dai L, Yang Y, Lu G, Sun B. SbMYC2 mediates jasmonic acid signaling to improve drought tolerance via directly activating SbGR1 in sorghum. Theor Appl Genet. 2024. https://doi.org/10.1007/s00122-024-04578-0.
[127]
Wang N, Ryan L, Sardesai N, Wu E, Lenderts B, Lowe K, Che P, Anand A, Worden A, Dyk Dv, Barone P, Svitashev S, Jones T, Gordon-Kamm W. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. Nat Plants. 2023. https://doi.org/10.1038/s41477-022-01338-0.
[128]
Welsch R, Li L. Golden Rice-Lessons learned for inspiring future metabolic engineering strategies and synthetic biology solutions. CAROTENOIDS: Carotenoid and Apocarotenoid Biosynthesis Metabolic Engineering and Synthetic Biology, 2022,
CrossRef Google scholar
[129]
Wu Y, Li X, Xiang W, Zhu C, Lin Z, Wu Y, Li J, Pandravada S, Ridder DD, Bai G, Wang ML, Trick HN, Bean SR, Tuinstra MR, Tesso TT, Yu J. Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1. Proc Natl Acad Sci U S A. 2012. https://doi.org/10.1073/pnas.1201700109.
[130]
Wu Y, Guo T, Mu Q, Wang J, Li X, Wu Y, Tian B, Wang ML, Bai G, Perumal R, Trick HN, Bean SR, Dweikat IM, Tuinstra MR, Morris G, Tesso TT, Yu J, Li X. Allelochemicals targeted to balance competing selections in African agroecosystems. Nat Plants. 2019. https://doi.org/10.1038/s41477-019-0563-0.
[131]
Wu X, Liu Y, Luo H, Shang L, Leng C, Liu Z, Li Z, Lu X, Cai H, Hao H. Genomic footprints of sorghum domestication and breeding selection for multiple end uses. Mol Plant. 2022. https://doi.org/10.1016/j.molp.2022.01.002.
[132]
Xie Q, Xu Z. Sustainable agriculture: from sweet sorghum planting and ensiling to ruminant feeding. Mol Plant. 2019. https://doi.org/10.1016/j.molp.2019.04.001.
[133]
Xie H, Engle N, Venketachalam S, Yoo C, Barros J, Lecoultre M, Howard N, Li G, Sun L, Srivastava A, Pattathil S, Pu Y, Hahn M, AJ. R, Nelson R, Dixon R, Tschaplinski T, Blancaflor E, Tang Y. Combining loss of function of FOLYLPOLYGLUTAMATE SYNTHETASE1 and CAFFEOYL-COA 3-O-METHYLTRANSFERASE1 for lignin reduction and improved saccharification efficiency in Arabidopsis thaliana. Biotechnol Biofuels. 2019a. https://doi.org/10.1186/s13068-019-1446-3.
[134]
Xie P, Shi J, Tang S, Chen C, Khan A, Zhang F, Xiong Y, Li C, He W, Wang G, Lei F, Wu Y, Xie Q. Control of bird feeding behavior by Tannin1 through modulating the biosynthesis of polyphenols and fatty acid-derived volatiles in sorghum. Mol Plant. 2019b. https://doi.org/10.1016/j.molp.2019.08.004.
[135]
Xie P, Tang S, Chen C, Zhang H, Yu F, Li C, Wei H, Sui Y, Wu C, Diao X, Wu Y, Xie Q. Natural variation in Glume Coverage 1 causes naked grains in sorghum. Nat Commun. 2022. https://doi.org/10.1038/s41467-022-28680-3.
[136]
Xie P, Wu Y, Xie Q. Evolution of cereal floral architecture and threshability. Trends Plant Sci. 2023. https://doi.org/10.1016/j.tplants.2023.08.003.
[137]
Yamaguchi M, Fujimoto H, Hirano K, Araki-Nakamura S, Ohmae-Shinohara K, Fujii A, Tsunashima M, Song XJ, Ito Y, Nagae R, Wu J, Mizuno H, Yonemaru J, Matsumoto T, Kitano H, Matsuoka M, Kasuga S, Sazuka T. Sorghum Dw1, an agronomically important gene for lodging resistance, encodes a novel protein involved in cell proliferation. Sci Rep. 2016. https://doi.org/10.1038/srep28366.
[138]
Yang S, Murphy R, Morishige D, Klein P, Rooney W, Mullet J. Sorghum phytochrome B inhibits flowering in long days by activating expression of SbPRR37 and SbGHD7, repressors of SbEHD1, SbCN8 and SbCN12. PLoS One. 2014a. https://doi.org/10.1371/journal.pone.0105352.
[139]
Yang S, Weers BD, Morishige DT, Mullet JE. CONSTANS is a photoperiod regulated activator of flowering in sorghum. BMC Plant Biol. 2014b. https://doi.org/10.1186/1471-2229-14-148.
[140]
Yang Z, Chi X, Guo F, Jin X, Luo H, Hawar A, Chen Y, Feng K, Wang B, Qi J, Yang Y, Sun B. SbWRKY30 enhances the drought tolerance of plants and regulates a drought stress-responsive gene, SbRD19, in sorghum. J Plant Physiol. 2020. https://doi.org/10.1016/j.jplph.2020.153142.
[141]
Zhan M, Gao J, You J, Guan K, Zheng M, Meng X, Li H, Yang Z. The transcription factor SbHY5 mediates light to promote aluminum tolerance by activating SbMATE and SbSTOP1s expression. Plant Physiol Biochem. 2023. https://doi.org/10.1016/j.plaphy.2023.108197.
[142]
Zhang D, Li J, Compton RO, Robertson J, Goff VH, Epps E, Kong W, Kim C, Paterson AH. Comparative genetics of seed size traits in divergent cereal lineages represented by sorghum (Panicoidae) and rice (Oryzoidae). G3 (Bethesda). 2015. https://doi.org/10.1534/g3.115.017590.
[143]
Zhang LM, Leng CY, Luo H, Wu XY, Liu ZQ, Zhang YM, Zhang H, Xia Y, Shang L, Liu CM, Hao DY, Zhou YH, Chu CC, Cai HW, Jing HC. Sweet sorghum originated through selection of Dry, a plant-specific NAC transcription factor gene. Plant Cell. 2018. https://doi.org/10.1105/tpc.18.00313.
[144]
Zhang D, Tang S, Xie P, Yang D, Wu Y, Cheng S, Du K, Xin P, Chu J, Yu F, Xie Q. Creation of fragrant sorghum by CRISPR/Cas9. J Integr Plant Biol. 2022. https://doi.org/10.1111/jipb.13232.
[145]
Zhang H, Yu F, Xie P, Sun S, Qiao X, Tang S, Chen C, Yang S, Mei C, Yang D, Wu Y, Xia R, Li X, Lu J, Liu Y, Xie X, Ma D, Xu X, Liang Z, Xie Q. A Gγ protein regulates alkaline sensitivity in crops. Science. 2023. https://doi.org/10.1126/science.ade8416.
[146]
Zhang L, Wang C, Yu M, Cong L, Zhu Z, Chen B, Lu X. Identification and analysis of novel recessive alleles for Tan1 and Tan2 in sorghum. PeerJ. 2024a. https://doi.org/10.7717/peerj.17438.
[147]
Zhang W, Benke R, Zhang X, Zhang H, Zhao C, Zhao Y, Xu Y, Wang H, Liu S, Li X, Wu Y. Novel allelic variations in Tannin1 and Tannin2 contribute to tannin absence in sorghum. Mol Breed. 2024b. https://doi.org/10.1007/s11032-024-01463-y.
[148]
Zhao J, Chen H, Ren D, Tang H, Qiu R, Feng J, Long Y, Niu B, Chen D, Zhong T, Liu YG, Guo J. Genetic interactions between diverged alleles of Early heading date 1 (Ehd1) and Heading date 3a (Hd3a)/ RICE FLOWERING LOCUS T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa). New Phytol. 2015. https://doi.org/10.1111/nph.13503.
[149]
Zhao J, Mantilla Perez MB, Hu J, Salas Fernandez MG. Genome-wide association study for nine plant architecture traits in sorghum. Plant Genome. 2016. https://doi.org/10.3835/plantgenome2015.06.0044.
[150]
Zheng HX, Dang YY, Diao XM, Sui N. Molecular mechanisms of stress resistance in sorghum: implications for crop improvement strategies. J Integr Agric. 2024. https://doi.org/10.1016/j.jia.2023.12.023.
[151]
Zhou L, Zhu C, Fang X, Liu H, Zhong S, Li Y, Liu J, Song Y, Jian X, Lin Z. Gene duplication drove the loss of awn in sorghum. Mol Plant. 2021. https://doi.org/10.1016/j.molp.2021.07.005.
[152]
Zhou M, Zhao B, Li H, Ren W, Zhang Q, Liu Y, Zhao J. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics. 2022. https://doi.org/10.1016/j.ygeno.2022.110311.
[153]
Zhu QL, Yu SZ, Zeng DC, Liu HM, Wang HC, Yang ZF, Xie XR, Shen RX, Tan JT, Li HY, Zhao XC, Zhang QY, Chen YL, Guo JX, Chen LT, Liu YG. Development of “purple endosperm rice’’ by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant. 2017. https://doi.org/10.1016/j.molp.2017.05.008.
[154]
Zou G, Zhai G, Yan S, Li S, Zhou L, Ding Y, Liu H, Zhang Z, Zou J, Zhang L, Chen J, Xin Z, Tao Y. Sorghum qTGW1a encodes a G-protein subunit and acts as a negative regulator of grain size. J Exp Bot. 2020. https://doi.org/10.1093/jxb/eraa277.

Accesses

Citations

Detail

Sections
Recommended

/