Development of a CRISPR-Cas12a based assay for the detection of swine enteric coronaviruses in pig herds in China

Yongbo Xia, Yue Li, Yihong He, Xiaowei Wang, Wenjing Qiu, Xiaoyuan Diao, Yunfei Li, Junfeng Gao, Hanqin Shen, Chunyi Xue, Yongchang Cao, Peng Li, Zhichao Xu

Advanced Biotechnology ›› 2024, Vol. 2 ›› Issue (1) : 7. DOI: 10.1007/s44307-024-00015-x
Article

Development of a CRISPR-Cas12a based assay for the detection of swine enteric coronaviruses in pig herds in China

Author information +
History +

Abstract

Porcine epidemic diarrhea virus (PEDV), Transmissible gastroenteritis virus (TGEV), Porcine deltacoronavirus (PDCoV) and Swine acute diarrhea syndrome coronavirus (SADS-CoV) rank among the most frequently encountered swine enteric coronaviruses (SECoVs), leading to substantial economic losses to the swine industry. The availability of a rapid and highly sensitive detection method proves beneficial for the monitoring and surveillance of SECoVs. Based on the N genes of four distinct SECoVs, a novel detection method was developed in this study by combining recombinant enzyme polymerase isothermal amplification (RPA) with clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) 12a. Results showed that the cut-off value of CRISPR-Cas12a assay for SADS-CoV, PEDV, PDCoV and TGEV was 2.19 × 104 Relative Fluorescence Units (RFU), 1.57 × 104 RFU, 3.07 × 104 RFU and 1.64 × 104 RFU, respectively. The coefficient of variation (CV) of within and between runs by CRISPR-Cas12a assay for 6 clinical diarrhea samples were both less than 10%. The CRISPR-Cas12a assay demonstrated high specificity for TGEV, PEDV, PDCoV, and SADS-CoV with no cross-reactivity to other common swine viruses. This method also exhibited a low limit of detection of 2 copies for each virus. Additionally, the results demonstrated a perfect agreement (100%) between the CRISPR-Cas12a assay and the RT-qPCR assay. Finally, a total of 494 pig samples from the field tested by CRISPR-Cas12a assay showed that positive rate for SADS-CoV, TGEV, PDCoV and PEDV was 0, 0, 1.2% and 48.6%, respectively. The results suggested the great potential of CRISPR-Cas12a assay to detect SECoVs in the field.

Keywords

Swine enteric coronaviruses / CRISPR-Cas12a / Nucleocapsid gene / Detection assay

Cite this article

Download citation ▾
Yongbo Xia, Yue Li, Yihong He, Xiaowei Wang, Wenjing Qiu, Xiaoyuan Diao, Yunfei Li, Junfeng Gao, Hanqin Shen, Chunyi Xue, Yongchang Cao, Peng Li, Zhichao Xu. Development of a CRISPR-Cas12a based assay for the detection of swine enteric coronaviruses in pig herds in China. Advanced Biotechnology, 2024, 2(1): 7 https://doi.org/10.1007/s44307-024-00015-x

References

[1]
Bandyopadhyay A, Kancharla N, Javalkote VS, Dasgupta S, Brutnell TP. CRISPR-Cas12a (Cpf1): A versatile tool in the plant genome editing tool box for agricultural advancement. Front Plant Sci, 2020, 11,
CrossRef Google scholar
[2]
Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol, 2005, 287: 1-30
[3]
Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, Zorn K, Gopez A, Hsu E, Gu W, Miller S, Pan CY, Guevara H, Wadford DA, Chen JS, Chiu CY. CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol, 2020, 38: 870-874,
CrossRef Google scholar
[4]
Chen JS, Ma E, Harrington LB, Da CM, Tian X, Palefsky JM, Doudna JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360: 436-439,
CrossRef Google scholar
[5]
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol, 2020, 92: 418-423,
CrossRef Google scholar
[6]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 2019, 17: 181-192,
CrossRef Google scholar
[7]
Decaro N, Lorusso A. Novel human coronavirus (SARS-CoV-2): A lesson from animal coronaviruses. Vet Microbiol, 2020, 244,
CrossRef Google scholar
[8]
Domingo E, Garcia-Crespo C, Lobo-Vega R, Perales C. Mutation rates, mutation frequencies, and proofreading-repair activities in RNA virus genetics. Viruses, 2021, 13: 1882,
CrossRef Google scholar
[9]
Edwards CE, Yount BL, Graham RL, Leist SR, Hou YJ, Dinnon KR, Sims AC, Swanstrom J, Gully K, Scobey TD, Cooley MR, Currie CG, Randell SH, Baric RS. Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proc Natl Acad Sci U S A, 2020, 117: 26915-26925,
CrossRef Google scholar
[10]
Gong L, Li J, Zhou Q, Xu Z, Chen L, Zhang Y, Xue C, Wen Z, Cao Y. A New Bat-HKU2-like Coronavirus in Swine, China, 2017. Emerg Infect Dis, 2017, 23: 1607-1609,
CrossRef Google scholar
[11]
Gong H, Wu Y, Zeng R, Zeng Y, Liu X, Tang D. CRISPR/Cas12a-mediated liposome-amplified strategy for the photoelectrochemical detection of nucleic acid. Chem Commun (camb), 2021, 57: 8977-8980,
CrossRef Google scholar
[12]
Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 2018, 360(6387): 439-444,
CrossRef Google scholar
[13]
Haake C, Cook S, Pusterla N, Murphy B. Coronavirus infections in companion animals: virology, epidemiology, clinical and pathologic features. Viruses, 2020, 12(9): 1023,
CrossRef Google scholar
[14]
Hao J, Xue C, He L, Wang Y, Cao Y. Bioinformatics insight into the spike glycoprotein gene of field porcine epidemic diarrhea strains during 2011–2013 in Guangdong. China Virus Genes, 2014, 49: 58-67,
CrossRef Google scholar
[15]
He WT, Ji X, He W, Dellicour S, Wang S, Li G, Zhang L, Gilbert M, Zhu H, Xing G, Veit M, Huang Z, Han GZ, Huang Y, Suchard MA, Baele G, Lemey P, Su S. Genomic epidemiology, evolution, and transmission dynamics of porcine deltacoronavirus. Mol Biol Evol, 2020, 37: 2641-2654,
CrossRef Google scholar
[16]
Jung K, Saif LJ, Wang Q. Porcine epidemic diarrhea virus (PEDV): An update on etiology, transmission, pathogenesis, and prevention and control. Virus Res, 2020, 286,
CrossRef Google scholar
[17]
Kim SH, Kim IJ, Pyo HM, Tark DS, Song JY, Hyun BH. Multiplex real-time RT-PCR for the simultaneous detection and quantification of transmissible gastroenteritis virus and porcine epidemic diarrhea virus. J Virol Methods, 2007, 146: 172-177,
CrossRef Google scholar
[18]
Lednicky JA, Tagliamonte MS, White SK, Elbadry MA, Alam MM, Stephenson CJ, Bonny TS, Loeb JC, Telisma T, Chavannes S, Ostrov DA, Mavian C, Beau DRV, Salemi M, Morris JJ. Independent infections of porcine deltacoronavirus among Haitian children. Nature, 2021, 600: 133-137,
CrossRef Google scholar
[19]
Li P, Ren X. Reverse transcription loop-mediated isothermal amplification for rapid detection of transmissible gastroenteritis virus. Curr Microbiol, 2011, 62: 1074-1080,
CrossRef Google scholar
[20]
Li Y, Zheng F, Fan B, Muhammad HM, Zou Y, Jiang P. Development of an indirect ELISA based on a truncated S protein of the porcine epidemic diarrhea virus. Can J Microbiol, 2015, 61: 811-817,
CrossRef Google scholar
[21]
Li S, Cheng Q, Wang J, Li X, Zhang Z, Gao S, Cao R, Zhao G, Wang J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov, 2018, 4: 20,
CrossRef Google scholar
[22]
Li C, Lu H, Geng C, Yang K, Liu W, Liu Z, Yuan F, Gao T, Wang S, Wen P, Song H, Tian Y, Zhou D. Epidemic and evolutionary characteristics of swine enteric viruses in south-central China from 2018 to 2021. Viruses, 2022, 14: 1420,
CrossRef Google scholar
[23]
Li M, Pan Y, Xi Y, Wang M, Zeng Q. Insights and progress on epidemic characteristics, genotyping, and preventive measures of PEDV in China: A review. Microb Pathog, 2023, 181,
CrossRef Google scholar
[24]
Liang Y, Lin H, Zou L, Zhao J, Li B, Wang H, Lu J, Sun J, Yang X, Deng X, Tang S. CRISPR-Cas12a-Based Detection for the Major SARS-CoV-2 Variants of Concern. Microbiol Spectr, 2021, 9,
CrossRef Google scholar
[25]
Lin H, Zhou H, Gao L, Li B, He K, Fan H. Development and application of an indirect ELISA for the detection of antibodies to porcine epidemic diarrhea virus based on a recombinant spike protein. BMC Vet Res, 2018, 14: 243,
CrossRef Google scholar
[26]
Liu Q, Wang HY. Porcine enteric coronaviruses: an updated overview of the pathogenesis, prevalence, and diagnosis. Vet Res Commun, 2021, 45: 75-86,
CrossRef Google scholar
[27]
Liu Y, Liang QZ, Lu W, Yang YL, Chen R, Huang YW, Wang B. A comparative analysis of coronavirus nucleocapsid (N) proteins reveals the SADS-CoV N protein antagonizes IFN-beta production by inducing ubiquitination of RIG-I. Front Immunol, 2021, 12,
CrossRef Google scholar
[28]
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395: 565-574,
CrossRef Google scholar
[29]
Ma Y, Zhang Y, Liang X, Lou F, Oglesbee M, Krakowka S. Origin, evolution, and virulence of porcine deltacoronaviruses in the United States. mBio., 2015, 6(2): e00064,
CrossRef Google scholar
[30]
Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Res, 2002, 30: 1292-1305,
CrossRef Google scholar
[31]
Manghwar H, Lindsey K, Zhang X, Jin S. CRISPR/Cas system: recent advances and future prospects for genome editing. Trends Plant Sci, 2019, 24: 1102-1125,
CrossRef Google scholar
[32]
Mao Z, Chen R, Wang X, Zhou Z, Peng Y, Li S, Han D, Li S, Wang Y, Han T, Liang J, Ren S, Gao Z. CRISPR/Cas12a-based technology: A powerful tool for biosensing in food safety. Trends Food Sci Technol, 2022, 122: 211-222,
CrossRef Google scholar
[33]
Marraffini LA, Sontheimer EJ. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet, 2010, 11: 181-190,
CrossRef Google scholar
[34]
Pan Z, Lu J, Wang N, He WT, Zhang L, Zhao W, Su S. Development of a TaqMan-probe-based multiplex real-time PCR for the simultaneous detection of emerging and reemerging swine coronaviruses. Virulence, 2020, 11: 707-718,
CrossRef Google scholar
[35]
Paul B, Montoya G. CRISPR-Cas12a: Functional overview and applications. Biomed J, 2020, 43: 8-17,
CrossRef Google scholar
[36]
Shi Y, Fu X, Yin Y, Peng F, Yin X, Ke G, Zhang X. CRISPR-Cas12a System for Biosensing and Gene Regulation. Chem Asian J, 2021, 16: 857-867,
CrossRef Google scholar
[37]
Sozzi E, Luppi A, Lelli D, Martin AM, Canelli E, Brocchi E, Lavazza A, Cordioli P. Comparison of enzyme-linked immunosorbent assay and RT-PCR for the detection of porcine epidemic diarrhoea virus. Res Vet Sci, 2010, 88: 166-168,
CrossRef Google scholar
[38]
Sun Y, Yu L, Liu C, Ye S, Chen W, Li D, Huang W. One-tube SARS-CoV-2 detection platform based on RT-RPA and CRISPR/Cas12a. J Transl Med, 2021, 19: 74,
CrossRef Google scholar
[39]
Tan M, Liao C, Liang L, Yi X, Zhou Z, Wei G. Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front Cell Infect Microbiol, 2022, 12: 1019071,
CrossRef Google scholar
[40]
Wang B, Liu Y, Ji CM, Yang YL, Liang QZ, Zhao P, Xu LD, Lei XM, Luo WT, Qin P, Zhou J, Huang YW. Porcine deltacoronavirus engages the transmissible gastroenteritis virus functional receptor porcine aminopeptidase N for infectious cellular entry. J Virol, 2018, 92: e00318-e418,
CrossRef Google scholar
[41]
Wang X, He S, Zhao N, Liu X, Cao Y, Zhang G, Wang G, Guo C. Development and clinical application of a novel CRISPR-Cas12a based assay for the detection of African swine fever virus. BMC Microbiol, 2020, 20: 282,
CrossRef Google scholar
[42]
Wen Z, Xu Z, Zhou Q, Li W, Wu Y, Du Y, Chen L, Zhang Y, Xue C, Cao Y. Oral administration of coated PEDV-loaded microspheres elicited PEDV-specific immunity in weaned piglets. Vaccine, 2018, 36: 6803-6809,
CrossRef Google scholar
[43]
Wu J, Huang Y, Ding X, Kang L, Wang X, Li D, Cheng W, Liu G, Xue J, Ding S. CPA-Cas12a-based lateral flow strip for portable assay of Methicillin-resistant Staphylococcus aureus in clinical sample. J Nanobiotechnology, 2023, 21: 234,
CrossRef Google scholar
[44]
Xia L, Yang Y, Wang J, Jing Y, Yang Q. Impact of TGEV infection on the pig small intestine. Virol J, 2018, 15: 102,
CrossRef Google scholar
[45]
Xiong D, Dai W, Gong J, Li G, Liu N, Wu W, Pan J, Chen C, Jiao Y, Deng H, Ye J, Zhang X, Huang H, Li Q, Xue L, Zhang X, Tang G. Rapid detection of SARS-CoV-2 with CRISPR-Cas12a. PLoS Biol, 2020, 18,
CrossRef Google scholar
[46]
Xu Z, Zhong H, Zhou Q, Du Y, Chen L, Zhang Y, Xue C, Cao Y. A Highly Pathogenic Strain of Porcine Deltacoronavirus Caused Watery Diarrhea in Newborn Piglets. Virol Sin, 2018, 33: 131-141,
CrossRef Google scholar
[47]
Xu Z, Zhang Y, Gong L, Huang L, Lin Y, Qin J, Du Y, Zhou Q, Xue C, Cao Y. Isolation and characterization of a highly pathogenic strain of Porcine enteric alphacoronavirus causing watery diarrhoea and high mortality in newborn piglets. Transbound Emerg Dis, 2019, 66: 119-130,
CrossRef Google scholar
[48]
Yan Q, Liu X, Sun Y, Zeng W, Li Y, Zhao F, Wu K, Fan S, Zhao M, Chen J, Yi L. Swine enteric coronavirus: diverse pathogen-host interactions. Int J Mol Sci, 2022, 23: 3953,
CrossRef Google scholar
[49]
Yang YL, Qin P, Wang B, Liu Y, Xu GH, Peng L, Zhou J, Zhu SJ, Huang YW. Broad cross-species infection of cultured cells by bat HKU2-related swine acute diarrhea syndrome coronavirus and identification of its replication in murine dendritic cells in vivo highlight its potential for diverse interspecies transmission. J Virol, 2019, 93: e01448-e1519,
CrossRef Google scholar
[50]
Yang YL, Yu JQ, Huang YW. Swine enteric alphacoronavirus (swine acute diarrhea syndrome coronavirus): An update three years after its discovery. Virus Res, 2020, 285,
CrossRef Google scholar
[51]
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 2015, 163: 759-771,
CrossRef Google scholar
[52]
Zhai SL, Wei WK, Li XP, Wen XH, Zhou X, Zhang H, Lv DH, Li F, Wang D. Occurrence and sequence analysis of porcine deltacoronaviruses in southern China. Virol J, 2016, 13: 136,
CrossRef Google scholar
[53]
Zhai X, Kong N, Zhang Y, Song Y, Qin W, Yang X, Ye C, Ye M, Tong W, Liu C, Zheng H, Yu H, Zhang W, Yang X, Zhang G, Tong G, Shan T. N protein of PEDV plays chess game with host proteins by selective autophagy. Autophagy, 2023, 19: 2338-2352,
CrossRef Google scholar
[54]
Zhang J. Porcine deltacoronavirus: Overview of infection dynamics, diagnostic methods, prevalence and genetic evolution. Virus Res, 2016, 226: 71-84,
CrossRef Google scholar
[55]
Zhang H, Zou C, Peng O, Ashraf U, Xu Q, Gong L, Fan B, Zhang Y, Xu Z, Xue C, Wei X, Zhou Q, Tian X, Shen H, Li B, Zhang X, Cao Y. Global dynamics of porcine enteric coronavirus PEDV epidemiology, evolution, and transmission. Mol Biol Evol., 2023, 40(3): msad052,
CrossRef Google scholar
Funding
Key-Area Research and Development Program of Guangdong Province(2022B1111030001); National Key Research and Development Program, China(2021YFD1801101)

Accesses

Citations

Detail

Sections
Recommended

/