Innovative Approaches to Bioethanol Production: Utilizing Olive Oil Wastewater, Milk Whey, and Sugarcane Molasses through Enzymatic Hydrolysis and Yeast Immobilization

Djawad Rouam , Malika Meziane , Mohammed El Amine Bendaha , Hedia Nacera

Annals of Agri-bio Research ›› 2025, Vol. 30 ›› Issue (1) : 56 -67.

PDF (1393KB)
Annals of Agri-bio Research ›› 2025, Vol. 30 ›› Issue (1) : 56 -67. DOI: 10.53941/agrbio.2025.100008
research-article

Innovative Approaches to Bioethanol Production: Utilizing Olive Oil Wastewater, Milk Whey, and Sugarcane Molasses through Enzymatic Hydrolysis and Yeast Immobilization

Author information +
History +
PDF (1393KB)

Abstract

This work describes a new method for fermentative ethanol production using a triple waste substrate mixture of olive oil wastewater (OOWW), milk whey (MW), and sugarcane molasses (SCM). Enzymatic hydrolysis was performed using a commercial enzyme complex, Natuzyme, at concentrations of 0.25%, 0.5%, and 0.75%. Fermentation was performed at 30 °C, pH 5.5, and 150 rpm using immobilized cells of Saccharomyces cerevisiae (Sc) previously isolated from OOWW. The ethanol yields produced by immobilized S. cerevisiae ranged from 16.56 g/L to a maximum of 34.56 g/L at the 0.5% enzyme concentration, demonstrating an optimal balance between hydrolytic efficiency and yeast activity. Four different fermentation formulations were prepared by varying the proportions of the waste components, resulting in different substrate compositions and fermentation outcomes. These results demonstrate the potential of valorizing heterogeneous waste streams for the sustainable production of ethanol. This study advances environmentally responsible waste management and opens a promising avenue for large-scale ethanol production using yeast immobilization techniques.

Keywords

renewable biofuels / agro-industrial by-products / enzymatic bioconversion / immobilized fermentation / multi-substrate fermentation / sustainable energy

Cite this article

Download citation ▾
Djawad Rouam, Malika Meziane, Mohammed El Amine Bendaha, Hedia Nacera. Innovative Approaches to Bioethanol Production: Utilizing Olive Oil Wastewater, Milk Whey, and Sugarcane Molasses through Enzymatic Hydrolysis and Yeast Immobilization. Annals of Agri-bio Research, 2025, 30(1): 56-67 DOI:10.53941/agrbio.2025.100008

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abu Tayeh, H., Najami, N., Dosoretz, C., Tafesh, A. and Azaizeh, H. (2014). Potential of bioethanol production from olive mill solid wastes. Bioresour. Technol. 152; 24-30. https://doi.org/10.1016/j.biortech.2013.10.102.

[2]

Álvarez-Cao, M.-E., Becerra, M. and González-Siso, M.-I. (2020). Chapter 8—Biovalorization of cheese whey and molasses wastes to galactosidases by recombinant yeasts. In N. Krishnaraj Rathinam & R. K. Sani (Eds.), Biovalorisation of Wastes to Renewable Chemicals and Biofuels. Amsterdam, Elsevier; pp. 149-161. https://doi.org/10.1016/B978-0-12-817951-2.00008-0.

[3]

Ayadi, K., M., M., Rouam, D., Mohammed, B. and El- Miloudi, K. (2022). Olive Mill Wastewater for Bioethanol Production using Immobilised Cells. Kem. Ind. 71: 21-28. https://doi.org/10.15255/KUI.2021.015.

[4]

Bhardwaj, N., Kumar, B., Agrawal, K. and Verma, P. (2021). Current perspective on production and applications of microbial cellulases: A review. Bioresour. Bioprocess. 8: 95. https://doi.org/10.1186/s40643-021-00447-6.

[5]

Bisswanger, H. (2017). Enzyme Kinetics: Principles and Methods. Hoboken: John Wiley & Sons.

[6]

Bouizar, R., Mouzai, A. and Boughellout, H. (2021). Impact of milk substitution by sweet whey on chocolate mousse physicochemical, microstructural and sensory properties. Algerian J. Nutr. Food Sci. 1(4): 17-24.

[7]

Bouknana, D., Hammouti, B., Salghi, R., Jodeh, S., Zarrouk, A., Warad, I., Aouniti, A. and Sbaa, M. (2014). Physicochemical Characterization of Olive Oil Mill Wastewaters in the eastern region of Morocco. J. Mater. Environ. Sci. 5(4): 1039-1058.

[8]

Calabrò P. S., Fòlino, A., Tamburino, V., Zappia, G. and Zema, D. A. (2018). Increasing the tolerance to polyphenols of the anaerobic digestion of olive wastewater through microbial adaptation. Biosyst. Eng. 172: 19-28. https://doi.org/10.1016/j.biosystemseng.2018.05.010.

[9]

Carteni, F., Occhicone, A., Giannino, F., Vincenot, C. E., de Alteriis, E., Palomba, E. and Mazzoleni, S. (2020). A General Process- Based Model for Describing the Metabolic Shift in Microbial Cell Cultures. Front. Microbiol. 11: 521368. https://doi.org/10.3389/fmicb.2020.521368.

[10]

Chang, Y.-H., Chang, K.-S., Chen, C.-Y., Hsu., Chang, T.-C. and Jang, H.-D. (2018). Enhancement of the Efficiency of Bioethanol Production by Saccharomyces cerevisiae via Gradually Batch-Wise and Fed-Batch Increasing the Glucose Concentration. Fermentation 4(2): 2. https://doi.org/10.3390/fermentation4020045.

[11]

Cheng, D., Liu, Y., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Zhang, S., Luo, G. and Liu, Y. (2020). A review on application of enzymatic bioprocesses in animal wastewater and manure treatment. Bioresour. Technol. 313: 123683. https://doi.org/10.1016/j.biortech.2020.123683.

[12]

Clément, G. (1956). Dosage des lipides dans les produits alimentaires; considérations sur leur valeur nutritive (1). Ann. De Zootech. 5(3): 237-253.

[13]

Darwin, Charles, W. and Cord-Ruwisch, R. (2019). Anaerobic acidification of sugar-containing wastewater for biotechnological production of organic acids and ethanol. Environ. Technol. 40(25); 3276-3286. https://doi.org/10.1080/09593330.2018.1468489.

[14]

de Araujo, T. M., da Cunha, M. M. L., Barga, M. C., Della-Bianca, B. E. and Basso, T. O. (2024). Production of flavor-active compounds and physiological impacts in immobilized Saccharomyces spp. Cells during beer fermentation. Lett. Appl. Microbiol. 77(9): ovae083. https://doi.org/10.1093/lambio/ovae083.

[15]

Djeziri, S., Taleb, Z., Djellouli, M. and Taleb, S. (2023). Physicochemical and microbiological characterisation of Olive Oil Mill Wastewater (OMW) from the region of Sidi Bel Abbes (Western Algeria). Moroc. J. Chem. 11(2): 2. https://doi.org/10.48317/IMIST.PRSM/morjchem-v11i2.31935.

[16]

Duque, A., Álvarez, C., Doménech, P., Manzanares, P. and Moreno, A. D. (2021). Advanced Bioethanol Production: From Novel Raw Materials to Integrated Biorefineries. Processes 9(2): 206. https://doi.org/10.3390/pr9020206.

[17]

el Kafz, G., Cherkaoui, E., Benradi, F., Khamar, M. and Nounah, A. (2023). Characterization of Two Olive Mill Wastewater and Its Effect on Fenugreek (Trigonella foenum- graecum) Germination and Seedling Growth. J. Ecol. Eng. 24: 207-217. https://doi.org/10.12911/22998993/171545.

[18]

Esmail, A., Abed, H., Firdaous, M., Chahboun, N., ﻥﺎﻨﻣ ءﺎﻳﺮﻛﺯ, Z. M., Berny, E. and Mohammed, O. (2013). Étude physico-chimique et microbiologique des margines de trois régions du Maroc (Ouazzane, Fès Boulman et Béni Mellal) [Physico-chemical and microbiological study of oil mill wastewater (OMW) from three different regions of Morocco (Ouazzane, Fes Boulman and Béni Mellal)]. J. Mater. Environ. Sci. 5: 121-126.

[19]

Galdieri, L., Mehrotra, S., Yu, S. and Vancura, A. (2010). Transcriptional Regulation in Yeast during Diauxic Shift and Stationary Phase. OMICS A J. Integr. Biol. 14(6): 629-638. https://doi.org/10.1089/omi.2010.0069.

[20]

Gonzalez, J. M. and Aranda, B. (2023). Microbial Growth under Limiting Conditions-Future Perspectives. Microorganisms 11(7): 1641. https://doi.org/10.3390/microorganisms11071641.

[21]

Hakika, D. C., Sarto, S., Mindaryani, A. and Hidayat, M. (2019). Decreasing COD in Sugarcane Vinasse Using the Fenton Reaction: The Effect of Processing Parameters. Catalysts 9(11): 881. https://doi.org/10.3390/catal9110881.

[22]

Hassan, S. H. A., el, Nasser A. Zohri, A. and Kassim, R. M. F. (2019). Electricity generation from sugarcane molasses using microbial fuel cell technologies. Energy 178: 538-543. https://doi.org/10.1016/j.energy.2019.04.087.

[23]

Jain, A., Jain, R. and Jain, S. (2020). Quantitative Analysis of Reducing Sugars by 3,5- Dinitrosalicylic Acid (DNSA Method). In A. Jain, R. Jain, & S. Jain (Eds.), Basic Techniques in Biochemistry, Microbiology and Molecular Biology: Principles and Techniques. New York: Springer US; pp. 181-183. https://doi.org/10.1007/978-1-4939-9861-6_43.

[24]

Jessen, J. E. and Orlygsson, J. (2012). Production of Ethanol from Sugars and Lignocellulosic Biomass by Thermoanaerobacter J1 Isolated from a Hot Spring in Iceland. J. Biomed. Biotechnol.2012: 186982. https://doi.org/10.1155/2012/186982.

[25]

Kovács, E., Wirth, R., Maróti, G., Bagi, Z., Rákhely, G. and Kovács, K. L. (2013). Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition. PLoS ONE 8(10): e77265.https://doi.org/10.1371/journal.pone.0077265.

[26]

Kumara Behera, B. and Varma, A. (2017). Material- Balance Calculation of Fermentation Processes. In B. Kumara Behera & A. Varma (Eds.), Microbial Biomass Process Technologies and Management. New York: Springer International Publishing; pp. 257- 298. https://doi.org/10.1007/978-3-319-53913-3_5.

[27]

Lachebi, S. and Yelles, F. (2018). Valorisation du lactosérum par technique membranaire. Alger. J. Environ. Sci. Technol. 4(3). Available online: https://www.aljest.net/index.php/aljest/article/view/55 (accessed on 07 February 2025).

[28]

Lievore, P., Simões, D. R. S., Silva, K. M., Drunkler, N. L., Barana, A. C., Nogueira, A. and Demiate, I. M. (2015). Chemical characterisation and application of acid whey in fermented milk. J. Food Sci. Technol. 52(4): 2083-2092. https://doi.org/10.1007/s13197-013-1244-z.

[29]

Maier, R. M. and Pepper, I. L. (2015). Chapter 3— Bacterial Growth. In I. L. Pepper, C. P. Gerba, & T. J. Gentry (Eds.), Environmental Microbiology (Third Edition). Cambridge, Academic Press; pp. 37-56. https://doi.org/10.1016/B978-0-12-394626-3.00003-X.

[30]

Manoochehri, H., Hosseini, N. F., Saidijam, M., Taheri, M., Rezaee, H. and Nouri, F. (2020). A review on invertase: Its potentials and applications. Biocata. Agric. Biotechnoll. 25, 101599. https://doi.org/10.1016/j.bcab.2020.101599.

[31]

Mohd-Zaki, Z., Bastidas-Oyanedel, J. R., Lu, Y., Hoelzle, R., Pratt, S., Slater, F. R. and Batstone, D. J. (2016). Influence of pH Regulation Mode in Glucose Fermentation on Product Selection and Process Stability. Microorganisms 4(1): 2. https://doi.org/10.3390/microorganisms4010002.

[32]

Nguyen, S. T. C., Freund, H. L., Kasanjian, J. and Berlemont, R. (2018). Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy. Appl. Microbiol. Biotechnol. 102(4): 1629-1637. https://doi.org/10.1007/s00253-018-8778-y.

[33]

Pasotti, L., Zucca, S., Casanova, M., Micoli, G., Cusella De Angelis, M. G. and Magni, P. (2017). Fermentation of lactose to ethanol in cheese whey permeate and concentrated permeate by engineered Escherichia coli. BMC Biotechnol. 17(1): 48. https://doi.org/10.1186/s12896-017-0369-y.

[34]

Rouam, D., & Meziane, M. (2025). Valorization of olive mill wastewater for acetic acid production by Bacillus strains isolated from bovine rumen. Environmental and Experimental Biology, 23(1), Article 1. https://doi.org/10.22364/eeb.23.03

[35]

Saqib, S., Akram, A., Halim, S. A. and Tassaduq, R. (2017). Sources of β-galactosidase and its applications in food industry. 3 Biotech 7(1): 79. https://doi.org/10.1007/s13205-017-0645-5.

[36]

Tebbouche, L., Aziza, M., Abada, S., Chergui, A., Amrane, A. and Hellal, A. (2024). Bioethanol production from deproteinized cheese whey powder by local strain isolated from soured milk: Influence of operating parameters. Energy Sources Part A: Recovery Util. Environ. Eff. 46(1): 397-408. https://doi.org/10.1080/15567036.2023.2284851.

[37]

Vasić K., Knez, Ž. and Leitgeb, M. (2021). Bioethanol Production by Enzymatic Hydrolysis from Different Lignocellulosic Sources. Molecules 26(3): 753. https://doi.org/10.3390/molecules26030753.

[38]

Waterborg, J. H. and Matthews, H. R. (1984). The Lowry Method for Protein Quantitation. In J. M. Walker (Ed.), Basic protein and peptide protocols. Totowa: Humana Press; pp. 1-3. https://doi.org/10.1385/0-89603-062-8:1.

[39]

Yang, X., Wang, K., Wang, H., Zhang, J., Tang, L. and Mao, Z. (2016). Control of pH by acetic acid and its effect on ethanol fermentation in an integrated ethanol-methane fermentation process. RSC Adv. 6(63): 57902-57909. https://doi.org/10.1039/C6RA04129A.

[40]

Yusuf, U., Usman, U. G., Abubakar, A. Y. and Mansir, G. (2023). Effect of pH and Temperature on Bioethanol Production: Evidences from the Fermentation of Sugarcane Molasses using Saccharomyces cerevisiae. Dutse J. Pure Appl. Sci. 8: 9-16. https://doi.org/10.4314/dujopas.v8i4b.2.

[41]

Zhang, P., Hai, H., Sun, D., Yuan, W., Liu, W., Ding, R., Teng, M., Ma, L., Tian, J. and Chen, C. (2019). A high throughput method for total alcohol determination in fermentation broths. BMC Biotechnol. 19(1): 30. https://doi.org/10.1186/s12896-019-0525-7.

AI Summary AI Mindmap
PDF (1393KB)

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/