Effect of Rice Bran Husk Substrate on the Production of Asparginase by Streptomyces sp. Derived from Termite Mound

Jamith Basha Abdul Wahid , Raja Arunprasath , Ayyanar Pandurangan , Gajalakshmi Purushothaman

Annals of Agri-bio Research ›› 2025, Vol. 30 ›› Issue (1) : 50 -55.

PDF (421KB)
Annals of Agri-bio Research ›› 2025, Vol. 30 ›› Issue (1) : 50 -55. DOI: 10.53941/agrbio.2025.100007
research-article

Effect of Rice Bran Husk Substrate on the Production of Asparginase by Streptomyces sp. Derived from Termite Mound

Author information +
History +
PDF (421KB)

Abstract

An important criterion for the potency assessment is that the source of cheap substrate for L-asparaginase production is much needed. Isolation of novel actinobacteria from a termite mound was performed by conventional pretreatment isolation and enzyme screening by plate assay method to compare the effect of carbon and substrate over L-asparaginase produced by submerged fermentation state with minimal medium. The enzyme production was studied by the Nesslerization method. Following heat treatment, the results indicated that the isolate decreased the eubacterial colony-forming unit. Out of the ten pre-heated samples, one soil tested positive for actinobacteria and nine tested negative. The isolate detected as asparaginase-positive was annotated as TS5 morphologically showed aerial and substrate mycelia formation and was identified as Streptomyces sp. The production of L-asparaginase among four different carbons revealed that lactose was an inducer. Further the cheap substrate such as rice bran is evaluated under substrate state fermentation and a good result on enzyme production is noted on both defatted and raw rice bran. The highest peak activity of the enzyme production (183 ± 9.11 U/mL) was attained at 10% raw rice bran with 66.3 ± 0.26 mg/mL protein. These results provide evidence that agro-waste substrate within the investigated parameters increased the LA generation. These findings are expected to promote the industrial utilization of important actinomycetes from termite mound.

Keywords

agro-waste / substrate fermentation / rice bran / asparaginase / cancer

Cite this article

Download citation ▾
Jamith Basha Abdul Wahid, Raja Arunprasath, Ayyanar Pandurangan, Gajalakshmi Purushothaman. Effect of Rice Bran Husk Substrate on the Production of Asparginase by Streptomyces sp. Derived from Termite Mound. Annals of Agri-bio Research, 2025, 30(1): 50-55 DOI:10.53941/agrbio.2025.100007

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baskaran, R., Vijayakumar, R. and Mohan, P. (2011). Enrichment method for the isolation of bioactive actinomycetes from mangrove sediments of Andaman Islands, India. Malays. J. Microbiol. 7: 26-32.

[2]

Beckett, A. and Gervais, D. (2019). What makes a good new therapeutic L-asparaginase? World J. Microbiol. Biotechnol. 35: 152.

[3]

Siepmann, F. B., Canan, C., De Jesus, M. M. M., Pazuch, C. M. and Colla, E. (2018). Release optimization of fermentable sugars from defatted rice bran for bioethanol production. Acta Scientiarum. Technol. 40: 35000.

[4]

Chergui, A., Trabelsi, L., Salem-Bekhit, M. M., Mahmoud, M. H., Taha, E.I., Ibrahim, M.A. and Houali, K. (2023). Optimization of intracellular L-Asparaginase production by Streptomyces paulus CA01 isolated from wheat bran using the response surface methodology. Biotechnol. Biotechnol. Equip. 37: 2281493.

[5]

Dastager, S. G., Lee, W. J., Dayanad, A., Tang, S. K. and Tian, S. P. (2006). Separation, identification and analysis of pigment (melanin) production in Streptomyces. Afr. J. Biotechnol. 5: 1131-1134.

[6]

Deokar, V. D., Vetal, M. D. and Rodrigues, L. (2010). Production of intracellular L- Asparaginase from Erwinia carotovora and its statistical optimization using response surface methodology (RSM). Int. J. Chem. Sci. 1: 25-36.

[7]

Arévalo-Tristancho, E., Díaz, L. E., Cortázar, J. E. and Valero, M. F. (2019). Production and Characterization of L-Asparaginases of Streptomyces Isolated from the Arauca Riverbank (Colombia). Open Microbiol. J. 13: 204-215.

[8]

Faret, M., de Morais, S. B., Zanchin, N. I. T. and de Souza, T. D. A. C. B. (2019). L-Asparaginase from Erwinia carotovora: insights about its stability and activity. Mol. Biol. Rep. 46: 1313-1316.

[9]

Gautham, S. A., Shobha, K. S. and Onkarappa, R. (2011). Streptomyces GOS-01, a broad spectrum antibiotic producing Actinomycetes from Westren Ghtas of Karnataka, India. Res. Rev. Biomed. Biotechnol. 2: 31-37.

[10]

Juluri, K. R., Siu, C. and Cassaday, R. D. (2022). Asparaginase in the Treatment of Acute Lymphoblastic Leukemia in Adults: Current Evidence and Place in Therapy. Blood Lymphat. Cancer 30: 55-79.

[11]

Kumar, P., Tilak, M., Sivakumar, K. and Saranya, K. (2018). Studies on the assessment of major nutrients and microbial population of termite mound soil. Int. J. For. Crop Improv. 9: 13-17.

[12]

Kumar, V., Naik, B., Choudhary, M., Kumar, A. and Khanduri, N. (2022). Agro-waste as a substrate for the production of pullulanase by Penicillium viridicatum under solid- state fermentation. Sci. Rep. 12: 12661.

[13]

Liu, Y., Dong, J. X., Liu, G. J., Yang, H. N., Liu, W., Wang, L., Kong, C. X., Zheng, D., Yang, J. G., Deng, L. W. and Wang, S. S. (2015). Co-digestion of tobacco waste with different agricultural biomass feedstocks and the inhibition of tobacco viruses by anaerobic digestion. Bioresour. Technol. 189: 210-216.

[14]

Lopes, A. M., Oliveira-Nascimento, L. and de Ribeiro, A. (2015). Therapeutic L-asparaginase: upstream, downstream and beyond. Crit. Rev. Biotechnol. 10: 1-18.

[15]

Manjula, A., Sathyavathi, S., Pushpanathan, M., Gunasekaran, P. and Rajendhran, J. (2014). Microbial diversity in termite nest. Curr. Sci. 106: 1430-1434.

[16]

Narta, U. K., Kanwar, S. S. and Azmi, W. (2007). Pharmacological and clinical evaluation of L-asparaginase in the treatment of leukemia. Crit. Rev. Oncol. Hematol. 61: 208-221.

[17]

Nguyen, T. A. D., Kim, K. R., Han, S. J., Cho, H. Y., Kim, J. W., Park, S. M. and Sim, S. J. (2010). Pretreatment of rice straw with ammonia and ionic liquid for lignocelluloses conversion to fermentable sugars. Bioresour. Technol. 101: 7432-7438.

[18]

Pandey, A., Ali, I., Singh Butola, K., Chatterji, T. and Singh, V. (2011). Isolation and characterization of Actinomycetes from soil and evaluation of antibacterial activities of Actinomycetes against pathogens. Int. J. Appl. Biol. Pharm. 2: 384-392.

[19]

Rabelo, N. G., Simões, L. A., Fernandes, N. d. A. T., Souza, A. C., Fernandes, M. L. P., Veríssimo, L. A. A., Schwan, R. F. and Dias, D. R. (2025). Optimization of L-Asparaginase Production from Aspergillus caespitosus: Solid-State and Submerged Fermentation Using Low-Cost Substrates and Partial Purification. Appl. Microbiol. 5: 19.

[20]

Rangabhashiyam, S., Anu, N. and Selvaraju, N. (2013). Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. J. Environ. Chem. Eng. 1: 629-641

[21]

Saleena, S. K., Johnson, J. I., Joseph, J, K., Padinchati, K. K. and Abdulla, M. H. A. (2023). Production and optimization of L- asparaginase by Streptomyces koyangensis SK4 isolated from Arctic sediment. J. Basic. Microbiol. 63: 417-426.

[22]

Shahana Kabeer, S., Francis, B., Vishnupriya, S., Kattatheyil, H., Joseph, K. J., Krishnan, K, P. and Mohamed Hatha, A. A. (2023). Characterization of L-asparaginase from Streptomyces koyangensis SK4 with acrylamide-minimizing potential in potato chips. Braz. J. Microbiol. 54: 1645-1654.

[23]

Shakambari, G., Birendranarayan, A. K., Lincy, M. J. A., Rai, S. K., Ahamed, Q. T., Ashokkumar, B., Saravanan, M. M., Ahesh, A. and Varalakshmi, P. (2016). Hemocompatible glutaminase free L-asparaginase from marine Bacillus tequilensis PV9W with anticancer potential modulating p53 expression. RSC Adv. 6: 25943-25951.

[24]

Sudha, S., Gopala Krishna, A.G. and Asna, U. (2011). Physico-chemical characteristics of defatted rice bran and its utilization in a bakery product. J. Food Sci. Technol. 48: 478-483.

[25]

Tan, B. L., Norhaizan, M. E. and Chan, L. C. (2023). Rice Bran: From Waste to Nutritious Food Ingredients. Nutrients 5: 2503.

[26]

Van den Berg, H. (2011). Asparaginase revisited. Leuk Lymphoma 52:168-178.

[27]

Vidhya, M., Aishwarya, R., Alagarsamy, S. and Rajesh, T. S. (2010). Production, purification and characterisation of extracellular L-asparaginase from a soil isolate of Bacillus sp. Afr. J. Microbiol. Res. 4: 1862-1867

[28]

Zhang, K., Ding, W., Han, C., Long, L., Yin, H. and Yin, J. (2024). Investigation on taxonomy, secondary metabolites and antibacterial activity of Streptomyces sediminicola sp. nov., a novel marine sediment-derived Actinobacteria. Microb. Cell Fact. 23: 285.

AI Summary AI Mindmap
PDF (421KB)

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/