PDF
(298KB)
Abstract
Water quality shapes aquatic fauna. However, no information is available about water quality and its effect on fish diversity of Mahakali River. This study was conducted to measure the temporal variation of physicochemical parameters of water and their effects on fish composition in the lower reaches of Mahakali River, Nepal in between September 2022 to August 2023. Measurements of water quality parameters and fish collection were carried out on a monthly basis. Shannon-Weiner diversity index was calculated to measure fish diversity and multiple regression analysis was computed to analyze the effects of physicochemical parameters of water in fish composition. This study revealed that physicochemical parameters of water at lower reaches of the river were in the range of fish tolerance and support good fish diversity (H = 3.06). Changing physicochemical parameters of water, instead of affecting the overall species, affected the species-specific manner and had significant effect on the species composition of Anguilla, Schizothorax, Mystus, Amblyceps, Bagarius, Ompok, Garra, Acanthocobitis, Schistura, Lepidocephalichthys, Xenentodon, Mastacembelus, Glossogobius and Channa fish species but had no effect on the species composition of Salmophasia, Barilius, Raimas, Puntius, Tor, Chagunius, Labeo and Botia. This study suggests that in snow fed perennial river high fish diversity, dominated by cyprinids, is found in autumn followed by winter season associated with clear river water, moderate temperature and more hardness in water containing more total dissolved solids.
Keywords
water quality
/
fish diversity
/
Mahakali River
/
species composition
/
cyprinid fish
Cite this article
Download citation ▾
Promod Joshi, Yagya Raj Joshi.
Physicochemical Parameters of Water and Their Effects in Temporal Variation of Fish Composition in Lower Reaches of Mahakali River, Nepal.
Annals of Agri-bio Research, 2025, 30(1): 1-9 DOI:10.53941/agrbio.2025.100001
| [1] |
Andrabi, S., Bakhtiyar, Y., Parveen, M. and Arafat, M. Y. (2022). Diversity and relative abundance of ichthyofauna in Manasbal Lake of the Kashmir Himalayas, India. Croatian J. Fish. 80: 113-122.
|
| [2] |
APHA, AWWA and WEF. (2017). Standard methods for the examination of water and wastewater. In: American Public Health Association, American Water Works Association, Water Environment Federation; (Eds. R. B. Baird, A. D. Eaton and E. W. Rice), 23rd ed. Washington, DC, USA: Amer. Pub. Hlth. Assoc.
|
| [3] |
Arai, T. and Abdul Kadir, S. R. (2017). Diversity, distribution and different habitat use among the tropical freshwater eels of genus Anguilla. Sci. Rep. 7: 9573.
|
| [4] |
Arai, T., Chai, I. J., Iizuka, Y. and Chang, C. W. (2020). Habitat segregation and migration in tropical anguillid eels, Anguilla bengalensis bengalensis and A. bicolor bicolor. Sci. Rep. 10: 16890.
|
| [5] |
Bhatnagar, A. and Devi, P. (2013). Water quality guidelines for the management of pond fish culture. Int. J. Environ. 3: 1980-1997.
|
| [6] |
Bhatt, P., Patiyal, R. S., Pathak, B. C. and Pandey, N. N. (2021). Food and feeding habit of indigenous fish sucker head Garra gotyla gotyla from Kosi River, Kumoan, Uttarakhand, India. Int. J. Zool. Investing. 7: 679-688.
|
| [7] |
Boyd, C. E. and Pillai, V. K. (1984). Water quality management in aquaculture. CMFRI Spec. Publ. 22: 1-44.
|
| [8] |
Brönmark, C., Hulthén, K., Nilsson, P. A., Skov, C., Hansson, L. A., Brodersen, J. and Chapman, B. B. (2014). There and back again: Migration in freshwater fishes. Can. J. Zool. 92: 467-479.
|
| [9] |
Caissie, D. (2006). The thermal regime of rivers: A review. Freshw. Biol. 51: 1389-1406.
|
| [10] |
Chapman, B. B., Hulthén, K., Blomqvist, D. R., Hansson, L. A., Nilsson, J. Å., Brodersen, J., Anders Nilsson, P., Skov, C. and Brönmark, C. (2011). To boldly go: Individual differences in boldness influence migratory tendency. Ecol. Lett. 14: 871-876.
|
| [11] |
Chen, D., Elhadj, A., Xu, H., Xu, X. and Qiao, Z. (2020). A study on the relationship between land use change and water quality of the Mitidja watershed in Algeria based on GIS and RS. Sustainability 12: 3510.
|
| [12] |
Ding, Y., Wu, Z., Zhu, Z. and Yan, J. (2018). Species composition, trend of biodiversity variation and conservation of the fish in Lijiang River (in China). Environ. Biol. Fishes 101: 675-685.
|
| [13] |
Duque, G., Gamboa-García, D. E., Molina, A. and Cogua, P. (2020). Effect of water quality variation on fish assemblages in an anthropogenically impacted tropical estuary, Colombian Pacific. Environ. Sci. Pollut. Res. 27: 25740-25753.
|
| [14] |
Dvořák, T., Bohlen, J., Kottelat, M. and Šlechtová V. (2023). Revision of the Schistura cincticauda species group (Teleostei, Nemacheilidae) using molecular and morphological markers. Sci. Rep. 13: 16996.
|
| [15] |
Fabian. (2023). Zig-Zag Eel Care: Complete Guide for Beginners. Aquarium Nexus. https://www.aquariumnexus.com/zig-zag-eel/
|
| [16] |
Ferdausi, H. J., Roy, N. C., Ferdous, M. J., Hossain, M. A., Hasan, M. M., Trina, B. Das, Mian, S., Iqbal, M. M., Munir, M. B. and Hossain, M. M. (2016). Reproductive biology of striped snakehead (Channa striata) from natural wetlands of Sylhet, Bangladesh. Ann. Vet. Anim. Sci. 2: 162-169.
|
| [17] |
Fuchs, T. (2013). Effects of habitat complexity on invertebrate biodiversity. Immed. Sci. Ecol. 2: 1-10.
|
| [18] |
Gaur, K. S., Sharma, V., Sharma, M. S. and Verma, B. K. (2013). Food and feeding habits of the hill stream fish Garra gotyla gotyla (Teleostei: Cyprinidae) in the streams of South-eastern Rajasthan. Ecol. Environ. Conserv. 19: 1025-1030.
|
| [19] |
George, S. D., Baldigo, B. P., Smith, M. J., McKeown, D. M. and Faulring, J. W. (2016). Variations in water temperature and implications for trout populations in the Upper Schoharie Creek and West Kill, New York, USA. J. Freshw. Ecol. 31: 93-108.
|
| [20] |
Herbert, E. R., Boon, P., Burgin, A. J., Neubauer, S. C., Franklin, R. B., Ardon, M., Hopfensperger, K. N., Lamers, L. P. M., Gell, P. and Langley, J. A. (2015). A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6: 1-43.
|
| [21] |
Hinshaw, J. M. (1999). Trout Production: Feeds and Feeding Methods. Texas Aquac. Ext. Ser. TX, USA, Southern Regional Aquaculture Center.
|
| [22] |
IBM, Corp. (2017). IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY, USA: IBM Corp.
|
| [23] |
Ibrahim, K. L. (2017). Physico-chemical parameters of water and their effects on fish production. J. Agric. Vet. Sci. 9: 20-31.
|
| [24] |
Islam, Md. R., Hossain, M. A., Afrose, F., Roy, N. C. and Iqbal, M. M. (2022). Effect of temperature on the growth performance, haematological properties and histomorphology of gill, intestine and liver tissues in juvenile butter catfish Ompok bimaculatus. Aqua. Fish & Fisheries 2: 277-286.
|
| [25] |
Jabbar, S., Liza, S., Islam, M., Rashid, I., Rahman, M., Hossain, M. and Salam, M. (2020). Breeding biology of freshwater goby Glossogobius giuris using gonado- somatic index and gonadal histology. Ann. Bangladesh Agric. 23: 1-13.
|
| [26] |
Jayaram, K. C. (2010). The Freshwater Fishes of the Indian Region, 2nd ed. Delhi, India: Narendra Publishing House.
|
| [27] |
Jiang, S., Wu, X., Du, S., Wang, Q. and Han, D. (2022). Are UK rivers getting saltier and more alkaline? Water 14: 2813.
|
| [28] |
Jiang, X., Dong, S., Liu, R., Huang, M., Dong, K., Ge, J., Gao, Q. and Zhou, Y. (2021). Effects of temperature, dissolved oxygen, and their interaction on the growth performance and condition of rainbow trout (Oncorhynchus mykiss). J. Therm. Biol. 98: 102928.
|
| [29] |
Joshi, K. D., Das, S. C. S., Khan, A. U., Pathak, R. K. and Sarkar, U. K. (2016). Reproductive biology of snow trout, Schizothorax richardsonii (Gray, 1832) in a tributary of River Alaknanda, India and their conservation implications. Int. J. Zool. Investing. 2: 109-114.
|
| [30] |
Karim, M. A., Rohani, M. F., Hasan, A. K. M. M., Farhad, F. B., Alam, M. M. M., Khalil, S. M. I. and Islam, S. M. M. (2022). Health status monitoring of Mystus cavasius through histological aberrations of liver and kidney due to the deterioration of water physico-chemical parameters in Surma River. Environ. Chem. Ecotox. 4: 148-154.
|
| [31] |
Karnatak, G., Sarkar, U. K., Naskar, M., Roy, K., Gupta, S., Nandy, S. K., Srivastava, P. K., Sarkar, S. Das, Sudheesan, D., Bose, A. K. and Verma, V. K. (2018). Understanding the role of climatic and environmental variables in gonadal maturation and spawning periodicity of spotted snakehead, Channa punctata (Bloch, 1793) in a tropical floodplain wetland, India. Environ. Biol. Fishes 101: 595-607.
|
| [32] |
Kaushal, S. S., Likens, G. E., Utz, R. M., Pace, M. L., Grese, M. and Yepsen, M. (2013). Increased river alkalinization in the eastern U.S. Environ. Sci. Technol. 47: 10302-10311.
|
| [33] |
Keilholz, P., Disse, M. and Halik, Ü. (2015). Effects of land use and climate change on groundwater and ecosystems at the middle reaches of the Tarim River using the MIKE SHE integrated hydrological model. Water 7: 3040-3056.
|
| [34] |
Khatri, N. and Tyagi, S. (2015). Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 8: 23-39.
|
| [35] |
Kunwar, R. M., Pyakurel, P., Burlakoti, C., Pyakurel, P. and Shah, S. G. (2015). Phyto-Ecological assessment of Mahakali River, Far Western Nepal. J. Nat. Hist. Mus. 29: 32-48.
|
| [36] |
Lunt, J. and Smee, D. L. (2020). Turbidity alters estuarine biodiversity and species composition. ICES J. Mar. Sci. 77: 379-387.
|
| [37] |
Mahakali River System. (n.d.). Retrieved June 16, 2024, from https://nepalrivers.net/mahakali-river-system/.
|
| [38] |
Mahamood, M., Javed, M., Alhewairini, S. S., Zahir, F., Sah, A. K. and Ahmad, M. I. (2021). Labeo rohita, a bio- indicator for water quality and associated biomarkers of heavy metal toxicity. NPJ Clean Water 4: 1-7.
|
| [39] |
Mandal, S. and Mandal, B. (2022). Reproductive Biology of Lepidocephalichthys guntea (Hamilton, 1822) from Kangsabati River, West Bengal. Res. J. Agric. Sci. 13: 1528-1535.
|
| [40] |
Mariu, A., Chatha, A. M. M., Naz, S., Khan, M. F., Safdar, W. and Ashraf, I. (2023). Effect of temperature, pH, salinity and dissolved oxygen on fishes. J. Zoo. Syst. 1: 1-12.
|
| [41] |
Mehmood, S., Ahmed, I. and Mushtaq, R. (2023). Physico- chemical parameters and freshwater fish diversity of Sip River Madhya Pradesh, India. Uttar Pradesh J. Zool. 44: 1-14.
|
| [42] |
Odoemenam, K. (n.d.). Water quality in catfish farming. Retrieved July 27, 2024, from https://catfishfarmenterprise.com/water-quality-in-catfish.
|
| [43] |
Ompok bimaculatus (n.d.). Retrieved August 6, 2024, from https://www.seriouslyfish.com/species/ompok-bimaculatus/.
|
| [44] |
Oude Essink, G. H. P. (2001). Improving fresh groundwater supply-problems and solutions. Ocean Coast Manag 44: 429-449.
|
| [45] |
Pandey, K. and Shukla, J. P. (2019). Fish and Fisheries, 4th ed. Meerut, India, Rastogi Publications.
|
| [46] |
Parihar, D., Saksena, D. N. and Rao, R. J. (2016). Seasonal variations in condition factor and feeding intensity of fresh water teleost: Ompok bimaculatus, Xenentodon cancila, Puntius sarana and Labeo boggut from Tighra reservoir, Gwalior (M.P.). Int J. Curr. Res. 8: 36727-36730.
|
| [47] |
Paul, B., Hasan, M. F., Islam, M. M., Kundu, G. K., Mondal, G., Saha, S. and Mustafa, M. G. (2019). Evaluation of the status of threatened catfish Bagarius bagarius (Hamilton, 1822) from the Padma and Meghna River stretches of Bangladesh. Dhaka Univ. J. Biol. Sci. 28: 111-120.
|
| [48] |
Rahman, A. K. A. (1989). Freshwater Fishes of Bangladesh. Dhaka, Bangladesh: Zoological Society of Bangladesh.
|
| [49] |
Reynolds, J. (2014). Effects of water quality on fish species in Cutler Reservoir. https://digitalcommons.usu.edu/student_showcase/107/.
|
| [50] |
Rodrigues, J. N., Ortega, J. C. G., Petsch, D. K., Padial, A. A., Moi, D. A. and Figueired, B. R. S. (2023). A meta-analytical review of turbidity effects on fish mobility. Rev. Fish Biol. Fish. 33: 1113-1127.
|
| [51] |
Romano, N., Egnew, N., Quintero, H., Kelly, A. and Sinha, A. K. (2020). The effects of water hardness on the growth, metabolic indicators and stress resistance of largemouth bass Micropterus salmoides. Aquaculture 527: 735469.
|
| [52] |
Saund, T. B., Thapa, J. B. and Bhatt, H. P. (2013). Fish diversity at Pancheshwar multipurpose project area in Mahakali River. Nepal J. Sci. Technol. 13: 225-230.
|
| [53] |
Seehausen, O., Van Alphen, J. J. M. and Witte, F. (1997). Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277: 1808-1811.
|
| [54] |
Serajuddin, M., Serajuddin, M. and Pathak, B. C. (2012). Study of reproductive traits of spiny eel, Mastacembelus armatus (Mastacembeliforms) from Kalinadi-A tributary of the Ganges River Basin, India. Res. J. Biol. 2: 145-150.
|
| [55] |
Shannon, C. E. and Weaver, W. (1949). The Mathematical Theory of Communication, Vol. 1. Univ. of Illinois Press.
|
| [56] |
Sharda River (n.d.). Retrieved December 8, 2023, from https://en.wikipedia.org/wiki/Sharda_River
|
| [57] |
Sharma, P. D. (2005). Ecology and Environment. Meerut, India: Rastogi Publications.
|
| [58] |
Shetty, A. kumar, Venkateshwarlu, M. and Muralidharan, M. (2015). Effect of water quality on the composition of fish communities in three coastal rivers of Karnataka, India. Int. J. Aquat. Biol. 3: 42-51.
|
| [59] |
Shrestha, T. K. (1990). Rare fishes of Himalayan waters of Nepal. J. Fish Biol. 37:213-216.
|
| [60] |
Swain, S., Sawant, P. B., Chadha, N. K., Chhandaprajnadarsini, E. M. and Katare, M. (2020). Significance of water pH and hardness on fish biological processes: A review. Int. J. Chem. Stud. 8: 830-837.
|
| [61] |
Viadero, R. (2019). Water quality factors affecting fish growth and production. In: Encyclopedia of Water. Wiley. pp. 1-10.
|
| [62] |
Volkoff, H. and Rønnestad, I. (2020). Effects of temperature on feeding and digestive processes in fish. Temperature 7: 307-320.
|
| [63] |
Westall, F. and Brack, A. (2018). The importance of water for life. Space Sci. Rev 214: 50.
|
| [64] |
Winslow, L. A., Read, J. S., Hansen, G. J. A., Rose, K. C. and Robertson, D. M. (2017). Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures. Limnol. Oceanogr. 62: 2168-2178.
|