Computed tomography-based assessment of maxillary bone tissue in females

Roman A. Fadeev , Tatiana A. Shchedrina

Acta Universitatis Dentistriae et Chirurgiae Maxillofacialis ›› 2024, Vol. 2 ›› Issue (4) : 197 -204.

PDF
Acta Universitatis Dentistriae et Chirurgiae Maxillofacialis ›› 2024, Vol. 2 ›› Issue (4) : 197 -204. DOI: 10.17816/uds642888
Scientific research
research-article

Computed tomography-based assessment of maxillary bone tissue in females

Author information +
History +
PDF

Abstract

BACKGROUND: Assessing X-ray features of the maxillofacial area in adults, including gender-related differences in bone tissue structure in males and females, is a crucial task in dentistry.

AIM: To assess the density and thickness of maxillary bone tissue in females.

MATERIALS AND METHODS: The assessment of maxillary bone tissue was based on computed tomography findings for 25 female patients (mean age 34.61 ± 6.08 years).

RESULTS: In females, the minimum cancellous bone thickness in the vestibular part is 0.23 ± 0.15 mm in Segment 1 and 0.25 ± 0.17 mm in Segment 2. The maximum cancellous bone thickness in the palatal part is 3.3 ± 1.5 mm in Segment 1 and 3.27 ± 1.47 mm in Segment 2. The minimum cancellous bone thickness in the palatal part is 1,250 ± 125 c.u. in Segment 1 and 1,250 ± 125 c.u. in Segment 2. The maximum compact plate density in the vestibular part is 2,023 ± 245 c.u. in Segment 1 and 2,024 ± 246 c.u. in Segment 2. The minimum bone tissue thickness in the maxilla was observed in the central incisor area in the vestibular part (0.25 ± 0.17 mm). The maximum compact plate density in the maxilla was observed in the premolar and molar area in the vestibular part (3.27 ± 1.47 mm). The minimum bone tissue density in the maxilla was observed in the central incisor and canine area in the vestibular part (1,250 ± 125 c.u.). The maximum bone tissue density in the maxilla was observed in the premolar and molar area in the vestibular part (2,120 ± 110 c.u.).

CONCLUSIONS: The density and thickness of compact plate and cancellous bone of the maxilla in the vestibular and palatal parts in females were determined. In case of distal and mesial occlusion, there were no significant differences in the density and thickness of bone tissue. The maximum cancellous bone thickness in the palatal part was observed from incisors to first premolars, with a significant decrease from second premolars to molars. Compact plate density in the vestibular part increased from canines to molars.

Keywords

compact plate / bone tissue / maxillary ridge / computed tomography / orthodontic treatment

Cite this article

Download citation ▾
Roman A. Fadeev, Tatiana A. Shchedrina. Computed tomography-based assessment of maxillary bone tissue in females. Acta Universitatis Dentistriae et Chirurgiae Maxillofacialis, 2024, 2(4): 197-204 DOI:10.17816/uds642888

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dolgalev A. Remov AYu, Boyko EM. Opportunities of 3D-technologies in planning implantologic treatment. Russian Bulletin of dental implantology. 2013;(1):23–27. (In Russ.) EDN: EWMMRO

[2]

Долгалев А. Ремов А.Ю., Бойко Е.М. Возможности 3D-технологий при планировании имплантологического лечения // Российский вестник дентальной имплантологии. 2013. № 1, С. 23–27. EDN: EWMMRO

[3]

Fadeev RA, Sheveleva YP, Chibisova MA. Methods of evaluation of retentive teeth after the data of dental computer tomography. Institute of Stomatology. 2010;(1):30–33. EDN: MBWNKV

[4]

Фадеев Р.А., Шевелева Ю.П., Чибисова М.А. Методика оценки положения ретенированных зубов по данным дентальной компьютерной томографии, часть 1 // Институт стоматологии. 2010. № 1. С. 30–33. EDN: MBWNKV

[5]

Chibisova MA. Three-dimensional dental computer tomograph GALILEOS (The Dental Company SIONA) in outpatient practice MEDI. Institute of Stomatology. 2008;(1):130–131. EDN: MWCQMP

[6]

Чибисова М.А. Трехмерный дентальный компьютерный томограф GALILEOS (The Dental Company SIONA) в амбулаторной практике MEDИ // Институт стоматологии. 2008. № 1. С. 130–131. EDN: MWCQMP

[7]

Simion G, Eckardt N, Senft Ch, Schwarz F. Bone density of the axis (C2) measured using hounsfield units of computed tomography. J Orthop Surg Res. 2023;18(1):19. doi: 10.1186/s13018-023-03560-8

[8]

Simion G., Eckardt N., Senft Ch., Schwarz F. Bone density of the axis (C2) measured using hounsfield units of computed tomography // J Orthop Surg Res. 2023. Vol. 18, N 1. P. 19. doi: 10.1186/s13018-023-03560-8

[9]

Nanda R. Biomechanics and aesthetics in clinical orthodontics. Transl. from Engl. Kovalenko AV. 2nd ed. Moscow: MEDpress-Inform; 2016. P. 33–41. (In Russ.)

[10]

Нанда Р. Биомеханика и эстетика в клинической ортодонтии. пер с англ. А.В. Коваленко. 2-е изд. Москва: МЕДпресс-информ, 2016. С. 33–41.

[11]

Profit WR. Modern orthodontics. Transl. from Engl. Kovalenko AV. 4 th ed. Moscow: MEDpress-Inform; 2008. P. 237–243. (In Russ.)

[12]

Проффит У.Р. Современная ортодонтия. пер с англ. А.В. Коваленко. 4-е изд. Москва: МЕДпресс-информ, 2008. C. 237–243.

[13]

Chuiko AN. On the possibilities of biomechanical support of the process of orthodontic treatment of teeth. Russian Journal of Biomechanics. 2009;13(1):68–78. (In Russ.) EDN: JYICTR

[14]

Чуйко А.Н. О возможностях биомеханического сопровождения процесса ортодонтического лечения зубов // Российский журнал биомеханики. 2009. Т. 13, № 1. С 68–78. EDN: JYICTR

[15]

Ivashenko SV, Ulashchik VS, Naumovich SA. Controlled restructuring of bone tachney in dento-mandibular anomalies and deformities in the formed bite. Minsk: BGMU; 2013. 218 p. (In Russ.)

[16]

Ивашенко С.В. Улащик В.С., Наумович С.А. Управляемая перестройка костной такни при зубочелюстных аномалиях и деформациях в сформированном прикусе. Минск: БГМУ, 2013. 218 с.

[17]

Melnikov AA, Dyachenko VV, Shubin IV, et al. Modern approaches and possibilities of bone mineral density assessment by quantitative computed tomography (literature review). Consilium Medicum. 2021;23(4):372–381. EDN: OWTAQC doi: 10.26442/20751753.2021.4.200643

[18]

Мельников А.А., Дьяченко В.В., Шубин И.В., и др. Современные подходы и возможности оценки минеральной плотности костной ткани методом количественной компьютерной томографии (обзор литературы) // Consilium Medicum. 2021. Т. 23, № 4. С. 372–381. EDN: OWTAQC doi: 10.26442/20751753.2021.4.200643

[19]

Vershinin VA, Kiryukhin VYu, Rogozhnikov GI. Biomechanical aspects of secondary deformation of teeth. Russian Journal of Biomechanics. 2004;8(2):19–28. EDN: JWSHFN

[20]

Вершинин В.А., Кирюхин В.Ю., Рогожников Г.И. Биомеханические аспекты вторичной деформации зубов // Российский журнал биомеханики. 2004. Т. 8, № 2. С. 19–28. EDN: JWSHFN

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/