Finite Element Method in Orthognatic Surgery
Natalia V. Vishnyova , Anastasia N. Lanina , Mikhail A. Zhmaylo , Karina R. Timerbulatova
Acta Universitatis Dentistriae et Chirurgiae Maxillofacialis ›› 2024, Vol. 2 ›› Issue (3) : 123 -130.
Finite Element Method in Orthognatic Surgery
The paper addresses the potential applications of the finite element method in orthognatic surgery. The finite element method has become a valuable research tool in dentistry due to its versatility, capacity to simulate complex geometry, and quick results. It is used for stress and strain analysis in complex mechanical systems and allows for the mathematical transformation and analysis of mechanical properties of geometric objects. The advantages of the finite element method in orthognatic surgery include reduced need for long-term animal tests and unethical tests in humans, noninvasiveness, imaging of superimposed structures, simplified analysis of the materials and geometry of orofacial structures, accurate determination of the direction and magnitude of the applied force, theoretical measurements of stress points, constant physical properties of assessed materials, high repeatability of tests, as well as static and dynamic analysis. The disadvantages of the method include the effect of the equipment used on the quality and details of findings, the need for extensive knowledge of materials science, the risk of errors in input data, statistics, and interpretation of findings, the need for advanced computer skills, and the inability to predict changes in assessed structures. Overall, the finite element method has proven effective in addressing biomedical issues in dentistry and orthognatic surgery.
finite element method / computing engineering / digital testing / virtual testing / biomechanics / orthognatic surgery / orthodontics
| [1] |
Marcián P, Wolff J, Horáčková L, et al. Micro finite element analysis of dental implants under different loading conditions. Comput Biol Med. 2018;96:157–165. doi: 10.1016/j.compbiomed.2018.03.012 |
| [2] |
Marcián P., Wolff J., Horáčková L., et al. Micro finite element analysis of dental implants under different loading conditions // Comput Biol Med. 2018. Vol. 96. P. 157–165. doi: 10.1016/j.compbiomed.2018.03.012 |
| [3] |
Boccaccio A, Uva AE, Fiorentino M, et al. Optimal load for bone tissue scaffolds with an assigned geometry. Int J Med Sci. 2018;15(1):16–22. doi: 10.7150/ijms.20522 |
| [4] |
Boccaccio A., Uva A.E., Fiorentino M., et al. Optimal load for bone tissue scaffolds with an assigned geometry // Int J Med Sci. 2018. Vol. 15, N 1. P. 16–22. doi: 10.7150/ijms.20522 |
| [5] |
Srirekha A, Bashetty K. Infinite to finite: An overview of finite element analysis. Indian J Dent Res. 2010;21(3):425–432. doi: 10.4103/0970-9290.70813 |
| [6] |
Srirekha A., Bashetty K. Infinite to finite: An overview of finite element analysis // Indian J Dent Res. 2010. Vol. 21, N 3. P. 425–432. doi: 10.4103/0970-9290.70813 |
| [7] |
Kul E, Korkmaz İH. Effect of different design of abutment and implant on stress distribution in 2 implants and peripheral bone: A finite element analysis study. J Prosthet Dent. 2021;126(5):664.E1–664.E9. doi: 10.1016/j.prosdent.2020.09.058 |
| [8] |
Kul E., Korkmaz İ.H. Effect of different design of abutment and implant on stress distribution in 2 implants and peripheral bone: A finite element analysis study // J Prosthet Dent. 2021. Vol. 126, N 5. P. 664.E1–664.E9. doi: 10.1016/j.prosdent.2020.09.058 |
| [9] |
Khechoyan DY. Orthognathic surgery: general considerations. Semin Plast Surg. 2013;27(3):133–136. doi: 10.1055/s-0033-1357109 |
| [10] |
Khechoyan D.Y. Orthognathic surgery: general considerations // Semin Plast Surg. 2013. Vol. 27, N 3. P. 133–136. doi: 10.1055/s-0033-1357109 |
| [11] |
Payan Y, Chabanas M, Pelorson X, et al. Biomechanical models to simulate consequences of maxillofacial surgery. Comptes Rendus Biologies. 2002;325(4):407–417. doi: 10.1016/s1631-0691(02)01443-9 |
| [12] |
Payan Y., Chabanas M., Pelorson X., et al. Biomechanical models to simulate consequences of maxillofacial surgery // Comptes Rendus Biologies. 2002. Vol. 325, N 4. P. 407–417. doi: 10.1016/s1631-0691(02)01443-9 |
| [13] |
Trivedi S. Finite element analysis: A boon to dentistry. J Oral Biol Craniofac Res. 2014;4(3):200–203. doi: 10.1016/j.jobcr.2014.11.008 |
| [14] |
Trivedi S. Finite element analysis: A boon to dentistry // J Oral Biol Craniofac Res. 2014. Vol. 4, N 3. P. 200–203. doi: 10.1016/j.jobcr.2014.11.008 |
| [15] |
Ding X, Zhu X-H, Liao S-H, et al. Implant–bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis. J Prosthodont. 2009;18(5):393–402. doi: 10.1111/j.1532-849X.2009.00453.x |
| [16] |
Ding X., Zhu X.-H., Liao S-H., et al. Implant–bone interface stress distribution in immediately loaded implants of different diameters: a three-dimensional finite element analysis // J Prosthodont. 2009. Vol. 18, N 5. P. 393–402. doi: 10.1111/j.1532-849X.2009.00453.x |
| [17] |
Dos Santos MBF, Da Silva Neto JP, Consani RLX, Mesquita MF. Three- dimensional finite element analysis of stress distribution in peri-implant bone with relined dentures and different heights of healing caps. J Oral Rehabil. 2011;38(9):691–696. doi: 10.1111/j.1365-2842.2011.02217.x |
| [18] |
Dos Santos M.B.F., Da Silva Neto J.P., Consani R.L.X., Mesquita M.F. Three- dimensional finite element analysis of stress distribution in peri-implant bone with relined dentures and different heights of healing caps // J Oral Rehabil. 2011. Vol. 38, N 9. P. 691–696. doi: 10.1111/j.1365-2842.2011.02217.x |
| [19] |
Demenko V, Linetskiy I, Nesvit K, Shevchenko A. Ultimate masticatory force as a criterion in implant selection. J Dent Res. 2011;90(10):1211–1215. doi: 10.1177/0022034511417442 |
| [20] |
Demenko V., Linetskiy I., Nesvit K., Shevchenko A. Ultimate masticatory force as a criterion in implant selection // J Dent Res. 2011. Vol. 90, N 10. P. 1211–1215. doi: 10.1177/0022034511417442 |
| [21] |
Cevidanes LH, Tucker S, Styner M, et al. Three-dimensional surgical simulation. Am J Orthod Dentofacial Orthop. 2010;138(3): 361–371. doi: 10.1016/j.ajodo.2009.08.026 |
| [22] |
Cevidanes L.H., Tucker S., Styner M., et al. Three-dimensional surgical simulation // Am J Orthod Dentofacial Orthop. 2010. Vol. 138, N 3. P. 361–371. doi: 10.1016/j.ajodo.2009.08.026 |
| [23] |
Knoops PGM, Borghi A, Ruggiero F, et al. A novel soft tissue prediction methodology for orthognathic surgery based on probabilistic finite element modelling. PLoS One. 2018;13(5):e0197209. doi: 10.1371/journal.pone.0197209 |
| [24] |
Knoops P.G.M., Borghi A., Ruggiero F., et al. A novel soft tissue prediction methodology for orthognathic surgery based on probabilistic finite element modelling // PLoS One. 2018. Vol. 13, N 5. P. e0197209. doi: 10.1371/journal.pone.0197209 |
| [25] |
Boryor A, Hohmann A, Wunderlich A, et al. Use of a modified expander during rapid maxillary expansion in adults: An in vitro and finite element study. Int J Oral Maxillofac Implants. 2013;28(1): e11–16. doi: 10.11607/jomi.2078 |
| [26] |
Boryor A., Hohmann A., Wunderlich A., et al. Use of a modified expander during rapid maxillary expansion in adults: An in vitro and finite element study // Int J Oral Maxillofac Implants. 2013. Vol. 28, N 1. P. e11–16. doi: 10.11607/jomi.2078 |
| [27] |
MacGinnis M, Chu H, Youssef G, et al. The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex — a finite element method (FEM) analysis. Prog Orthod. 2014;15(1):52. doi: 10.1186/s40510-014-0052-y |
| [28] |
MacGinnis M., Chu H., Youssef G., et al. The effects of micro-implant assisted rapid palatal expansion (MARPE) on the nasomaxillary complex — a finite element method (FEM) analysis // Prog Orthod. 2014. Vol. 15, N 1. ID 52. doi: 10.1186/s40510-014-0052-y |
| [29] |
Seong E-H, Choia S-H, Kimc H-J, et al. Evaluation of the effects of miniscrew incorporation in palatal expanders for young adults using finite element analysis. Korean J Orthod. 2018;48(2):81–89. doi: 10.4041/kjod.2018.48.2.81 |
| [30] |
Seong E.-H., Choia S.-H., Kimc H.-J., et al. Evaluation of the effects of miniscrew incorporation in palatal expanders for young adults using finite element analysis // Korean J Orthod. 2018. Vol. 48, N 2. P. 81–89. doi: 10.4041/kjod.2018.48.2.81 |
Eco-Vector
/
| 〈 |
|
〉 |