Effect of a Modified Herbst Appliance on the Mandible Assessed by the Finite Element Method
Nikita D. Pirsky , Roman A. Fadeev
Acta Universitatis Dentistriae et Chirurgiae Maxillofacialis ›› 2024, Vol. 2 ›› Issue (3) : 141 -150.
Effect of a Modified Herbst Appliance on the Mandible Assessed by the Finite Element Method
BACKGROUND: The finite element method is a computational tool widely used in engineering and biomechanics, which is becoming increasingly relevant in the field of orthodontics. The ability to model a complex biological structures has made it a valuable tool for understanding the interactions that occur during tooth movement. Orthodontic treatment is based on the application of mechanical forces to move the teeth to a more desirable position, but these forces also affect the surrounding tissues, including the periodontal ligament and alveolar bone. The finite element method allows you to predict how these tissues will respond to various exposures, which helps to develop more effective and safe treatment methods
AIM: To assess the effect of a Herbst appliance on bone structures of the mandible using the finite element method.
MATERIALS AND METHODS: A 3D model of the mandible in a 25-year-old adult patient was built, and the effect of a modified Herbst appliance on the mandible was assessed by the finite element method.
RESULTS: The physical properties of a viscoelastic material were determined for the 3D model, using a Kelvin model as the most appropriate best-case scenario for the cortical bone. The model of a static position of the mandible showed that the maximum mandibular displacement was 1.97 mm, the maximum elastic strain was 1.2% of the allowable limit, and the stress was less than 0.1% of the allowable limit. The model of mandibular movements during chewing revealed that the maximum displacement was 0.7 mm in the mandibular angle and coronoid process area. The elastic strain reached 2% of the allowable limit, concentrating on the distal surface of the mandibular second molar, and the stress was less than 0.2% of the allowable limit.
CONCLUSIONS: A viscoelastic Kelvin model enabled creating a 3D model of the mandible with properties similar to those of bone tissue. The use of the finite element method to assess the effect of a modified Herbst appliance on the mandible allowed for imaging of the displacement, strain, and stress observed while the appliance was utilized.
Herbst appliance / finite element method / orthodontics
| [1] |
Sun Z, Lee E, Herring SW. Cranial sutures and bones: Growth and fusion in relation to masticatory strain. Anat Rec. 2004;276A(2): 150–161. doi: 10.1002/ar.a.20002 |
| [2] |
Sun Z., Lee E., Herring S.W. Cranial sutures and bones: Growth and fusion in relation to masticatory strain // Anat Rec. 2004. Vol. 276A, N 2. P. 150–161. doi: 10.1002/ar.a.20002 |
| [3] |
Gröning F, Liu J, Fagan MJ, O’Higgins P. Why do humans have chins? Testing the mechanical significance of modern human symphyseal morphology with finite element analysis. Am J Phys Anthropol. 2011;144(4):593–606. doi: 10.1002/ajpa.21447 |
| [4] |
Gröning F., Liu J., Fagan M.J., O’Higgins P. Why do humans have chins? Testing the mechanical significance of modern human symphyseal morphology with finite element analysis // Am J Phys Anthropol. 2011. Vol. 144, N 4. P. 593–606. doi: 10.1002/ajpa.21447 |
| [5] |
Trivedi S. Finite element analysis: A boon to dentistry. J Oral Biol Craniofac Res. 2014;4(3):200–203. doi: 10.1016/j.jobcr.2014.11.008 |
| [6] |
Trivedi S. Finite element analysis: A boon to dentistry // J Oral Biol Craniofac Res. 2014. Vol. 4, N 3. P. 200–203. doi: 10.1016/j.jobcr.2014.11.008 |
| [7] |
Oh S, Choi Y-K, Kim S-H, et al. Biomechanical analysis for different mandibular total distalization methods with clear aligners: A finite element study. Korean J Orthod. 2023;53(6):420–430. doi: 10.4041/kjod23.035 |
| [8] |
Oh S., Choi Y.-K., Kim S.-H., et al. Biomechanical analysis for different mandibular total distalization methods with clear aligners: A finite element study // Korean J Orthod. 2023. Vol. 53, N 6. P. 420–430. doi: 10.4041/kjod23.035 |
| [9] |
Mohammed SD, Desai H. Basic concepts of finite element analysis and its applications in dentistry: An overview. J Oral Hyg Heal. 2014;2:156. doi: 10.4172/2332–0702.1000156 |
| [10] |
Mohammed S.D., Desai H. Basic concepts of finite element analysis and its applications in dentistry: An overview // J Oral Hyg Heal. 2014. Vol. 2. ID 156. doi: 10.4172/2332–0702.1000156 |
| [11] |
Johnson TPM, Socrate S, Boyce MC. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates. Acta Biomater. 2010;6(10):4073–4080. doi: 10.1016/j.actbio.2010.04.017 |
| [12] |
Johnson T.P.M., Socrate S., Boyce M.C. A viscoelastic, viscoplastic model of cortical bone valid at low and high strain rates // Acta Biomater. 2010. Vol. 6, N 10. P. 4073–4080. doi: 10.1016/j.actbio.2010.04.017 |
| [13] |
Chawla KK, Meyers MA. Mechanical behavior of materials. Prentice Hall; 1999. |
| [14] |
Chawla K.K., Meyers M.A. Mechanical behavior of materials. Prentice Hall, 1999. |
| [15] |
Edmonds HM, Glowacka H. The ontogeny of maximum bite force in humans. J Anat. 2020;237(3):529–542. doi: 10.1111/joa.13218 |
| [16] |
Edmonds H.M., Glowacka H. The ontogeny of maximum bite force in humans // J Anat. 2020. Vol. 237, N 3. P. 529–542. doi: 10.1111/joa.13218 |
| [17] |
Huang H-L, Chang C-H, Hsu J-T, et al. Comparison of implant body designs and threaded designs of dental implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants. 2007;22(4):551–562. |
| [18] |
Huang H.-L., Chang C.-H., Hsu J.-T., et al. Comparison of implant body designs and threaded designs of dental implants: a 3-dimensional finite element analysis // Int J Oral Maxillofac Implants. 2007. Vol. 22, N 4. P. 551–562. |
| [19] |
O’Brien WJ. Dental materials and their selection. 2nd ed. Chicago: Quintessence; 2002. 347 p. |
| [20] |
O’Brien W.J. Dental materials and their selection. 2nd ed. Chicago: Quintessence, 2002. 347 p. |
| [21] |
Yang H-S, Lang LA, Molina A, Felton DA. The effects of dowel design and load direction on dowel-and-core restorations. J Prosthet Dent. 2001;85(6):558–567. doi: 10.1067/mpr.2001.115504 |
| [22] |
Yang H.-S., Lang L.A., Molina A., Felton D.A. The effects of dowel design and load direction on dowel-and-core restorations // J Prosthet Dent. 2001. Vol. 85, N 6. P. 558–567. doi: 10.1067/mpr.2001.115504 |
| [23] |
Khlusov IA, Pichugin VF, Surmeneva MA, Surmenev RA. Fundamentals of biomechanics of biocompatible materials and biological tissues: textbook (revised and supplemented). Tomsk: TPU Publ.; 2023. 163 p. (In Russ.) |
| [24] |
Хлусов И.А., Пичугин В.Ф., Сурменева М.А., Сурменев Р.А. Основы биомеханики биосовместимых материалов и биологических тканей: учебное пособие (переработанное и дополненное). Томск: Изд-во ТПУ, 2023. 163 с. |
| [25] |
Nyashin YuI, Rogozhnikov GI, Rogozhnikov AG, et al. Biomechanical analysis of dental implants made of titanium and zirconium dioxide alloys. Russian journal of biomechanics. 2012;16(1):102–109. EDN: OXALAV (In Russ.) |
| [26] |
Няшин Ю.И., Рогожников Г.И., Рогожников А.Г., и др. Биомеханический анализ зубных имплантатов из сплава титана и диоксида циркония // Российский журнал биомеханики. 2012. Т. 16, № 1. C. 102–109. EDN: OXALAV |
| [27] |
Vilanova L, Bellini-Pereira SA, Patel MP, et al. Finite element analysis of two skeletally anchored maxillary molar distalisation methods. J Orthod. 2023;50(4):344–351. doi: 10.1177/14653125231166437 |
| [28] |
Vilanova L., Bellini-Pereira S.A., Patel M.P., et al. Finite element analysis of two skeletally anchored maxillary molar distalisation methods // J Orthod. 2023. Vol. 50, N 4. P. 344–351. doi: 10.1177/14653125231166437 |
| [29] |
Duggal I, Singh N, Tripathi T. Queries regarding clinical finite element analysis of mandibular displacement model treated with Twin-block appliance. Am J Orthod Dentofacial Orthop. 2023;164(4): 461–462. doi: 10.1016/j.ajodo.2023.06.019 |
| [30] |
Duggal I., Singh N., Tripathi T. Queries regarding clinical finite element analysis of mandibular displacement model treated with Twin-block appliance // Am J Orthod Dentofacial Orthop. 2023. Vol. 164, N 4. P. 461–462. doi: 10.1016/j.ajodo.2023.06.019 |
Eco-Vector
/
| 〈 |
|
〉 |