Interrelation of cognitive functions and neural networks with blood flow velocity through the internal jugular vein in patients with chronic cerebral ischemia

Vitaly F. Fokin , Roman B. Medvedev , Natalia V. Ponomareva , Rodion N. Konovalov , Olga V. Lagoda , Marina V. Krotenkova , Marine M. Tanashyan

Russian Military Medical Academy Reports ›› 2021, Vol. 40 ›› Issue (4) : 107 -112.

PDF
Russian Military Medical Academy Reports ›› 2021, Vol. 40 ›› Issue (4) :107 -112. DOI: 10.17816/rmmar83637
Original articles
research-article

Interrelation of cognitive functions and neural networks with blood flow velocity through the internal jugular vein in patients with chronic cerebral ischemia

Author information +
History +
PDF

Abstract

Understanding age-related and functional changes in cerebral venous circulation is critical for the development of new preventive, diagnostic and therapeutic approaches to maintaining brain health in the elderly. Chronic cerebral ischemia is one of the widespread socially significant vascular diseases caused by a decrease in the level of blood circulation. To assess the role of venous outflow through the internal jugular veins in cognitive decline and neural networks in patients with chronic cerebral ischemia, 30 men and 40 women (average age 66.5 years), cognitive functions and organization of neural networks were studied at high and low levels of cerebral venous blood flow through the internal jugular veins. To assess the venous outflow, the systolic blood flow rate was measured by the internal jugular veins. A higher rate of venous outflow through internal jugular veins is associated with a more successful performance of the Luria test for verbal memory. A higher or lower blood flow rate affects the formation of neural networks of the brain. At a higher blood flow rate, the predominant areas of the resting neural networks (the passive mode network of the brain and the salient network) are localized in the frontal regions, at a low blood flow rate, the predominant neural network (frontal-parietal) is located in the left hemisphere. The state of faster and slower venous outflow forms neural networks using different neural formations that affect verbal memory. Reorganization of neural networks in this case, apparently, is the central mechanism responsible for cognitive decline in chronic cerebral ischemia (2 figs, 1 table, bibliography: 10 refs)

Keywords

angioneurology / blood flow velocity / chronic cerebral ischemia / cognitive functions / diagnostics / internal jugular vein / neural networks

Cite this article

Download citation ▾
Vitaly F. Fokin, Roman B. Medvedev, Natalia V. Ponomareva, Rodion N. Konovalov, Olga V. Lagoda, Marina V. Krotenkova, Marine M. Tanashyan. Interrelation of cognitive functions and neural networks with blood flow velocity through the internal jugular vein in patients with chronic cerebral ischemia. Russian Military Medical Academy Reports, 2021, 40(4): 107-112 DOI:10.17816/rmmar83637

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Manvelov LS, Kadykov AV. Venous insufficiency of cerebral circulation. Nervous Diseases. 2007;(2):18–21. (In Russ.)

[2]

Манвелов Л.С., Кадыков А.В. Венозная недостаточность мозгового кровообращения // Нервные болезни. 2007. № 2. С. 18–21.

[3]

Fulop GA, Tarantini S, Yabluchanskiy A, et al. Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment. Am J Physiol Heart Circ Physiol. 2019;316(5):H1124–H1140. DOI: 10.1152/ajpheart.00776.2018

[4]

Fulop G.A., Tarantini S., Yabluchanskiy A., et al. Role of age-related alterations of the cerebral venous circulation in the pathogenesis of vascular cognitive impairment // Am. J. Physiol. Heart. Circ. Physiol. 2019. Vol. 316, No. 5. P. H1124–H1140. DOI: 10.1152/ajpheart.00776.2018

[5]

Schiffner R, Bischoff SJ, Lehmann T, et al. Underlying mechanism of subcortical brain protection during hypoxia and reoxygenation in a sheep model – Influence of α1-adrenergic signalling. PLoS One. 2018;13(5): e0196363. DOI: 10.1371/journal.pone.0196363

[6]

Schiffner R., Bischoff S.J., Lehmann T., et al. Underlying mechanism of subcortical brain protection during hypoxia and reoxygenation in a sheep model – Influence of α1-adrenergic signalling // PLoS One. 2018. Vol. 13, No. 5. P. e0196363. DOI: 10.1371/journal.pone.0196363

[7]

Suslina ZA, Illarioshkin SN, Piradov MA. Neurology and neuroscience – development prognosis. Annals of Clinical and Experimental Neurology. 2007;1(1):5–9. (In Russ.)

[8]

Суслина З.А., Иллариошкин С.Н., Пирадов М.А. Неврология и нейронауки — прогноз развития // Анналы клинической и экспериментальной неврологии. 2007. T. 1, № 1. С. 5–9.

[9]

Tanashyan MM, Maksimova MYu, Domashenko MA. Dyscirculatory encephalopathy. Putevoditel’ vrachebnykh naznacheniу. Terapevticheskiу spravochnik. 2015;2:1–25. (In Russ.)

[10]

Танашян М.М., Максимова М.Ю., Домашенко М.А. Дисциркуляторная энцефалопатия // Путеводитель врачебных назначений. Терапевтический справочник. 2015. Т. 2. С. 1–25.

[11]

Morris JC. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type. Int Psychogeriatr. 1997;9(Suppl 1):173–176; discussion 177–178. DOI: 10.1017/s1041610297004870

[12]

Morris J.C. Clinical dementia rating: a reliable and valid diagnostic and staging measure for dementia of the Alzheimer type // Int. Psychogeriatr. 1997. Vol. 9, Suppl. 1. P. 173–176; discussion 177–178. DOI: 10.1017/s1041610297004870

[13]

Batysheva TT, Artemova IYu, Vdovichenko TV, et al. Chronic cerebral ischemia: mechanisms of development and modern complex treatment. Spravochnik poliklinicheskogo vracha. 2004;3(4):51–56. (In Russ.)

[14]

Батышева Т.Т., Артемова И.Ю., Вдовиченко Т.В., и др. Хроническая ишемия мозга: механизмы развития и современное комплексное лечение // Справочник поликлинического врача. 2004. Т. 3, № 4. С. 51–56.

[15]

Fokin VF, Ponomareva NV. Cerebral asymmetry research technology. In: Piradov MA, Illarioshkin SN, Tanashyan MM, eds. Neurology of the XXI century. Diagnostic treatment and research technologies. A Guide for Physicians Modern Research Technologies in Neurology. Vol. 3. Moscow: ATMO Publisher; 2015: 350–375. (In Russ.)

[16]

Фокин В.Ф., Пономарева Н.В. Технология исследования церебральной асимметрии. В кн.: Неврология ХХI века. Диагностические лечебные и исследовательские технологии: Руководство для врачей. Современные исследовательские технологии в неврологии / под ред. М.А. Пирадова, С.Н. Иллариошкина, М.М. Танашян. Т. 3. М.: АТМО, 2015. C. 350–375.

[17]

Luriya AR. General Psychology Lectures. Saint Petersburg: Piter Publisher; 2006. 320 p. (In Russ.)

[18]

Лурия А.Р. Лекции по общей психологии. СПб.: Питер, 2006. 320 с.

[19]

Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–141. DOI: 10.1089/ brain.2012.0073

[20]

Whitfield-Gabrieli S., Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks // Brain Connect. 2012. Vol. 2, No. 3. P. 125–141. DOI: 10.1089/ brain.2012.0073

RIGHTS & PERMISSIONS

Fokin V.F., Medvedev R.B., Ponomareva N.V., Konovalov R.N., Lagoda O.V., Krotenkova M.V., Tanashyan M.M.

PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

/