Changes in the sensory regions of the brain in patients with multiple sclerosis after complex neurorehabilitation according to resting functional magnetic resonance imaging

Yuliya P. Kopteva , Svetlana D. Ponomaryova , Alina S. Agafina , Yana A. Filin , Gennady E. Trufanov , Sergey G. Sherbak

Russian Military Medical Academy Reports ›› 2024, Vol. 43 ›› Issue (3) : 269 -278.

PDF
Russian Military Medical Academy Reports ›› 2024, Vol. 43 ›› Issue (3) :269 -278. DOI: 10.17816/rmmar634165
Original articles
research-article

Changes in the sensory regions of the brain in patients with multiple sclerosis after complex neurorehabilitation according to resting functional magnetic resonance imaging

Author information +
History +
PDF

Abstract

BACKGROUND: Multiple sclerosis is the one of leading causes of non-traumatic disability in young adult patients. An in-depth understanding of the processes of neuroplasticity underlying rehabilitation measures will ensure full and effective recovery of patients with this disease.

AIM: To evaluate changes in the brain connectome in patients with multiple sclerosis in response to complex rehabilitation.

MATERIALS AND METHODS: A prospective cohort study included 20 patients with relapsing-remitting multiple sclerosis (EDSS 1.5–6.5) in remission. All patients underwent comprehensive inpatient neurorehabilitation in a volume corresponding to individual rehabilitation needs for 5 weeks. To assess changes in the connectome, resting-state functional magnetic resonance imaging (rs-fMRI) was performed at three points: before the start of rehabilitation, immediately after its completion, and one month after discharge from the hospital. Statistical analysis is carried out using the CONN 7 (based on MathLab). Clinical neurological examination included examination using functional tests, passing questionnaires, and determining scores on the EDSS scale before and after rehabilitation.

RESULTS: A total of 20 patients were examined, 13 of them at three control points. According to rs-fMRI data, clusters of decreased connectivity were identified between the left parahippocampal gyrus and the lateral cortex of the right occipital lobe, and between the right parahippocampal gyrus and the precuneus (p-FWE, p-FDR of cluster size and mass <0.05). Clusters of increased connectivity were determined between the left inferior temporal gyrus and the lateral occipital cortex of the left hemisphere, between the left middle temporal gyrus and the right frontal field, between the pole of the left temporal lobe and the lateral cortex of the left hemisphere (p-FWE, p-FDR of cluster size and mass <0.05). Other clusters of sufficient size demonstrated borderline statistical significance (individual adjusted p values for cluster size and mass exceeded 0.05).

CONCLUSION: The identified changes indicate a functional reorganization of brain structures responsible for the perception of complex visual information, the functioning of executive control systems, as well as the implementation of memory and sequential action planning.

Keywords

сonnectome / functional MRI / MRI / multiple sclerosis / neuroimaging / neurorehabilitation / rehabilitation / resting networks

Cite this article

Download citation ▾
Yuliya P. Kopteva, Svetlana D. Ponomaryova, Alina S. Agafina, Yana A. Filin, Gennady E. Trufanov, Sergey G. Sherbak. Changes in the sensory regions of the brain in patients with multiple sclerosis after complex neurorehabilitation according to resting functional magnetic resonance imaging. Russian Military Medical Academy Reports, 2024, 43(3): 269-278 DOI:10.17816/rmmar634165

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Olek MJ. Multiple sclerosis. Ann Intern Med. 2021;174(6): ITC81–ITC96. doi: 10.7326/AITC202106150

[2]

Olek M.J. Multiple sclerosis // Ann. Intern. Med. 2021. Vol. 174, N 6. P. ITC81–ITC96. doi: 10.7326/AITC202106150

[3]

Olek MJ. Multiple sclerosis. Ann Intern Med. 2021;174(6): ITC81–ITC96. doi: 10.7326/AITC202106150

[4]

Haki M, Al-Biati HA, Al-Tameemi ZS, et al. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine (Baltimore). 2024;103(8):e37297. doi: 10.1097/MD.0000000000037297

[5]

Haki M., Al-Biati H.A., Al-Tameemi Z.S., et al. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment // Medicine (Baltimore). 2024. Vol. 103, N 8. P. e37297. doi: 10.1097/MD.0000000000037297

[6]

Haki M, Al-Biati HA, Al-Tameemi ZS, et al. Review of multiple sclerosis: Epidemiology, etiology, pathophysiology, and treatment. Medicine (Baltimore). 2024;103(8):e37297. doi: 10.1097/MD.0000000000037297

[7]

Amin M, Hersh CM. Updates and advances in multiple sclerosis neurotherapeutics. Neurodegener Dis Manag. 2023;13(1):47–70. doi: 10.2217/nmt-2021-0058

[8]

Amin M., Hersh C.M. Updates and advances in multiple sclerosis neurotherapeutics // Neurodegener. Dis. Manag. 2023. Vol. 13, N 1. P. 47–70. doi: 10.2217/nmt-2021-0058

[9]

Amin M, Hersh CM. Updates and advances in multiple sclerosis neurotherapeutics. Neurodegener Dis Manag. 2023;13(1):47–70. doi: 10.2217/nmt-2021-0058

[10]

Lublin FD, Häring DA, Ganjgahi H, et al. How patients with multiple sclerosis acquire disability. Brain. 2022;145(9):3147–3161. doi: 10.1093/brain/awac016

[11]

Lublin F.D., Häring D.A., Ganjgahi H., et al. How patients with multiple sclerosis acquire disability // Brain. 2022. Vol. 145, N 9. P. 3147–3161. doi: 10.1093/brain/awac016

[12]

Lublin FD, Häring DA, Ganjgahi H, et al. How patients with multiple sclerosis acquire disability. Brain. 2022;145(9):3147–3161. doi: 10.1093/brain/awac016

[13]

Salari N, Hayati A, Kazeminia M, et al. The effect of exercise on balance in patients with stroke, Parkinson, and multiple sclerosis: a systematic review and meta-analysis of clinical trials. Neurol Sci. 2022;43(1):167–185. doi: 10.1007/s10072-021-05689-y

[14]

Salari N., Hayati A., Kazeminia M., et al. The effect of exercise on balance in patients with stroke, Parkinson, and multiple sclerosis: a systematic review and meta-analysis of clinical trials // Neurol Sci. 2022. Vol. 43, N 1. P. 167–185. doi: 10.1007/s10072-021-05689-y

[15]

Salari N, Hayati A, Kazeminia M, et al. The effect of exercise on balance in patients with stroke, Parkinson, and multiple sclerosis: a systematic review and meta-analysis of clinical trials. Neurol Sci. 2022;43(1):167–185. doi: 10.1007/s10072-021-05689-y

[16]

Centonze D, Leocani L, Feys P. Advances in physical rehabilitation of multiple sclerosis. Current Opinion in Neurology. 2020;33(3): 255–261. doi: 10.1097/wco.0000000000000816

[17]

Centonze D., Leocani L., Feys P. Advances in physical rehabilitation of multiple sclerosis // Current Opinion in Neurology. 2020. Vol. 33, N 3. P. 255–261. doi: 10.1097/wco.0000000000000816

[18]

Centonze D, Leocani L, Feys P. Advances in physical rehabilitation of multiple sclerosis. Current Opinion in Neurology. 2020;33(3): 255–261. doi: 10.1097/wco.0000000000000816

[19]

Sîrbu CA, Thompson DC, Plesa FC, et al. Neurorehabilitation in Multiple Sclerosis-A Review of Present Approaches and Future Considerations. J Clin Med. 2022;11(23):7003. doi: 10.3390/jcm11237003

[20]

Sîrbu C.A., Thompson D.C., Plesa F.C., et al. Neurorehabilitation in Multiple Sclerosis-A Review of Present Approaches and Future Considerations // J. Clin. Med. 2022. Vol. 11, N 23. P. 7003. doi: 10.3390/jcm11237003

[21]

Sîrbu CA, Thompson DC, Plesa FC, et al. Neurorehabilitation in Multiple Sclerosis-A Review of Present Approaches and Future Considerations. J Clin Med. 2022;11(23):7003. doi: 10.3390/jcm11237003

[22]

Guerra-Carrillo B, Mackey AP, Bunge SA. Resting-state fMRI: a window into human brain plasticity. Neuroscientist. 2014;20(5): 522–533. doi: 10.1177/1073858414524442

[23]

Guerra-Carrillo B., Mackey A.P., Bunge S.A. Resting-state fMRI: a window into human brain plasticity // Neuroscientist. 2014. Vol. 20, N 5. P. 522–533. doi: 10.1177/1073858414524442

[24]

Guerra-Carrillo B, Mackey AP, Bunge SA. Resting-state fMRI: a window into human brain plasticity. Neuroscientist. 2014;20(5): 522–533. doi: 10.1177/1073858414524442

[25]

Thiebaut de Schotten M, Forkel SJ. The emergent properties of the connected brain. Science. 2022;378(6619):505–510. doi: 10.1126/science.abq2591

[26]

Thiebaut de Schotten M., Forkel S.J.. The emergent properties of the connected brain // Science. 2022. Vol. 378, N 6619. P. 505–510. doi: 10.1126/science.abq2591

[27]

Thiebaut de Schotten M, Forkel SJ. The emergent properties of the connected brain. Science. 2022;378(6619):505–510. doi: 10.1126/science.abq2591

[28]

Rocca MA, Schoonheim MM, Valsasina P, et al. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022;35:103076. doi: 10.1016/j.nicl.2022.103076

[29]

Rocca M.A., Schoonheim M.M., Valsasina P., et al. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective // Neuroimage Clin. 2022. Vol. 35. P. 103076. doi: 10.1016/j.nicl.2022.103076

[30]

Rocca MA, Schoonheim MM, Valsasina P, et al. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022;35:103076. doi: 10.1016/j.nicl.2022.103076

[31]

Bučková B, Kopal J, Řasová K, et al. Open Access: The Effect of Neurorehabilitation on Multiple Sclerosis-Unlocking the Resting-State fMRI Data. Front Neurosci. 2021;15:662784. doi: 10.3389/fnins.2021.662784

[32]

Bučková B., Kopal J., Řasová K., et al. Open Access: The Effect of Neurorehabilitation on Multiple Sclerosis-Unlocking the Resting-State fMRI Data // Front. Neurosci. 2021. Vol. 15. P. 662784. doi: 10.3389/fnins.2021.662784

[33]

Bučková B, Kopal J, Řasová K, et al. Open Access: The Effect of Neurorehabilitation on Multiple Sclerosis-Unlocking the Resting-State fMRI Data. Front Neurosci. 2021;15:662784. doi: 10.3389/fnins.2021.662784

[34]

Carotenuto A, Valsasina P, Schoonheim MM, et al. Investigating Functional Network Abnormalities and Associations With Disability in Multiple Sclerosis. Neurology. 2022;99(22):e2517–e2530. doi: 10.1212/WNL.0000000000201264

[35]

Carotenuto A., Valsasina P., Schoonheim M.M., et al. Investigating Functional Network Abnormalities and Associations With Disability in Multiple Sclerosis // Neurology. 2022. Vol. 99, N 22. P. 2517–2530. doi: 10.1212/WNL.0000000000201264

[36]

Carotenuto A, Valsasina P, Schoonheim MM, et al. Investigating Functional Network Abnormalities and Associations With Disability in Multiple Sclerosis. Neurology. 2022;99(22):e2517–e2530. doi: 10.1212/WNL.0000000000201264

[37]

Chen MH, Wylie GR, Sandroff BM, et al. Neural mechanisms underlying state mental fatigue in multiple sclerosis: a pilot study. J Neurol. 2020;267(8):2372–2382. doi: 10.1007/s00415-020-09853-w

[38]

Chen M.H., Wylie G.R., Sandroff B.M., et al. Neural mechanisms underlying state mental fatigue in multiple sclerosis: a pilot study // J. Neurol. 2020. Vol. 267, N 8. P. 2372–2382. doi: 10.1007/s00415-020-09853-w

[39]

Chen MH, Wylie GR, Sandroff BM, et al. Neural mechanisms underlying state mental fatigue in multiple sclerosis: a pilot study. J Neurol. 2020;267(8):2372–2382. doi: 10.1007/s00415-020-09853-w

[40]

Tao Y, XueSong Z, Xiao Y, et al. Association between symbol digit modalities test and regional cortex thickness in young adults with relapsing-remitting multiple sclerosis. Clin Neurol Neurosurg. 2021;207:106805. doi: 10.1016/j.clineuro.2021.106805

[41]

Tao Y., XueSong Z., Xiao Y., et al. Association between symbol digit modalities test and regional cortex thickness in young adults with relapsing-remitting multiple sclerosis // Clin. Neurol. Neurosurg. 2021. Vol. 207. P. 106805. doi: 10.1016/j.clineuro.2021.106805

[42]

Tao Y, XueSong Z, Xiao Y, et al. Association between symbol digit modalities test and regional cortex thickness in young adults with relapsing-remitting multiple sclerosis. Clin Neurol Neurosurg. 2021;207:106805. doi: 10.1016/j.clineuro.2021.106805

[43]

Golde S, Heine J, Pöttgen J, et al. Distinct Functional Connectivity Signatures of Impaired Social Cognition in Multiple Sclerosis. Front Neurol. 2020;11:507. doi: 10.3389/fneur.2020.00507

[44]

Golde S., Heine J., Pöttgen J., et al. Distinct Functional Connectivity Signatures of Impaired Social Cognition in Multiple Sclerosis // Front. Neurol. 2020. Vol. 11. P. 507. doi: 10.3389/fneur.2020.00507

[45]

Golde S, Heine J, Pöttgen J, et al. Distinct Functional Connectivity Signatures of Impaired Social Cognition in Multiple Sclerosis. Front Neurol. 2020;11:507. doi: 10.3389/fneur.2020.00507

[46]

Cooray GK, Sundgren M, Brismar T. Mechanism of visual network dysfunction in relapsing-remitting multiple sclerosis and its relation to cognition. Clin Neurophysiol. 2020;131(2):361–367. doi: 10.1016/j.clinph.2019.10.029

[47]

Cooray G.K., Sundgren M., Brismar T. Mechanism of visual network dysfunction in relapsing-remitting multiple sclerosis and its relation to cognition // Clin. Neurophysiol. 2020. Vol. 131, N 2. P. 361–367. doi: 10.1016/j.clinph.2019.10.029

[48]

Cooray GK, Sundgren M, Brismar T. Mechanism of visual network dysfunction in relapsing-remitting multiple sclerosis and its relation to cognition. Clin Neurophysiol. 2020;131(2):361–367. doi: 10.1016/j.clinph.2019.10.029

[49]

Huang Q, Lin D, Huang S, et al. Brain Functional Topology Alteration in Right Lateral Occipital Cortex Is Associated With Upper Extremity Motor Recovery. Front Neurol. 2022;13:780966. doi: 10.3389/fneur.2022.780966

[50]

Huang Q., Lin D., Huang S., et al. Brain Functional Topology Alteration in Right Lateral Occipital Cortex Is Associated With Upper Extremity Motor Recovery // Front. Neurol. 2022. Vol. 13. P. 780966. doi: 10.3389/fneur.2022.780966

[51]

Huang Q, Lin D, Huang S, et al. Brain Functional Topology Alteration in Right Lateral Occipital Cortex Is Associated With Upper Extremity Motor Recovery. Front Neurol. 2022;13:780966. doi: 10.3389/fneur.2022.780966

[52]

Carotenuto A, Cocozza S, Quarantelli M, et al. Pragmatic abilities in multiple sclerosis: The contribution of the temporo-parietal junction. Brain Lang. 2018;185:47–53. doi: 10.1016/j.bandl.2018.08.003

[53]

Carotenuto A., Cocozza S., Quarantelli M., et al. Pragmatic abilities in multiple sclerosis: The contribution of the temporo-parietal junction // Brain Lang. 2018. Vol. 185. P. 47–53. doi: 10.1016/j.bandl.2018.08.003

[54]

Carotenuto A, Cocozza S, Quarantelli M, et al. Pragmatic abilities in multiple sclerosis: The contribution of the temporo-parietal junction. Brain Lang. 2018;185:47–53. doi: 10.1016/j.bandl.2018.08.003

[55]

Grothe M, Jochem K, Strauss S, et al. Performance in information processing speed is associated with parietal white matter tract integrity in multiple sclerosis. Front Neurol. 2022;13:982964. doi: 10.3389/fneur.2022.982964

[56]

Grothe M., Jochem K., Strauss S., et al. Performance in information processing speed is associated with parietal white matter tract integrity in multiple sclerosis // Front. Neurol. 2022. Vol. 13. P. 982964. doi: 10.3389/fneur.2022.982964

[57]

Grothe M, Jochem K, Strauss S, et al. Performance in information processing speed is associated with parietal white matter tract integrity in multiple sclerosis. Front Neurol. 2022;13:982964. doi: 10.3389/fneur.2022.982964

[58]

Toko M, Kitamura J, Ueno H, et al. Prospective Memory Deficits in Multiple Sclerosis: Voxel-based Morphometry and Double Inversion Recovery Analysis. Intern Med. 2021;60(1):39–46. doi: 10.2169/internalmedicine.5058-20

[59]

Toko M., Kitamura J., Ueno H., et al. Prospective Memory Deficits in Multiple Sclerosis: Voxel-based Morphometry and Double Inversion Recovery Analysis // Intern. Med. 2021. Vol. 60, N 1. P. 39–46. doi: 10.2169/internalmedicine.5058-20

[60]

Toko M, Kitamura J, Ueno H, et al. Prospective Memory Deficits in Multiple Sclerosis: Voxel-based Morphometry and Double Inversion Recovery Analysis. Intern Med. 2021;60(1):39–46. doi: 10.2169/internalmedicine.5058-20

RIGHTS & PERMISSIONS

Eco-Vector

PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

/