Functional study of the brain based on magnetic resonance imaging in patients with insomnia disorders

Anastasia A. Borshevetskaya , Alexander Yu. Efimtsev , Gennady E. Trufanov , Yurii V. Sviryaev , Valeria V. Amelina , Konstantin I. Sebelev , Yana A. Filin , Daniil A. Beregovskii

Russian Military Medical Academy Reports ›› 2024, Vol. 43 ›› Issue (3) : 261 -268.

PDF
Russian Military Medical Academy Reports ›› 2024, Vol. 43 ›› Issue (3) :261 -268. DOI: 10.17816/rmmar634084
Original articles
research-article

Functional study of the brain based on magnetic resonance imaging in patients with insomnia disorders

Author information +
History +
PDF

Abstract

BACKGROUND: Insomnia has a significant impact on the quality of life of patients. Despite the progress in understanding the pathophysiological mechanisms of insomnia, the possibilities of its objective diagnosis remain insufficiently studied. This study can contribute to understanding the neural mechanisms of insomnia, contribute to the development of new diagnostic and treatment methods, and personalize therapeutic approaches to improve the quality of life of patients with insomnia disorders.

AIM: to evaluate changes in the brain connectome in patients with psychophysiological and paradoxical insomnia by performing functional magnetic resonance imaging.

MATERIALS AND METHODS: A total of 31 patients were examined who applied for a somnologist appointment at the Federal State Budgetary Institution Almazov National Medical Research Centre of the Ministry of Health of the Russian Federation with diagnosed chronic insomnia. All patients underwent polysomnographic examination using Embla N 7000 (Natus, USA) and SOMNO HD (SOMNOmedics, Germany) for one night with an assessment of the main characteristics of sleep according to the rules of AASM 2.5. Also, all study participants underwent magnetic resonance imaging of the brain on tomographs with a magnetic field induction force of 3.0 Tl at two time points. Statistical analysis of MRI data was performed using MathLab 2023a, CONN v22.a packages. Descriptive statistics, the Kolmogorov–Smirnov criterion were used for processing materials, depending on the characteristics of the data, the Mann–Whitney U-criterion and Pearson Chi-squared were used to analyze demographic data.

DISCUSSION: The study demonstrates the possibilities of functional magnetic resonance imaging in obtaining data on the functional connections of the brain in insomnia. The detected changes in the activity of various brain regions indirectly or directly involved in the regulation of sleep and wakefulness are consistent with the most common pathogenetic models of insomnia, in particular with the theory of hyperactivation and the model of sleep reactivity to stress.

CONCLUSION: The results of the study emphasize the relevance of studying functional changes in the brain in insomnia, opening up new opportunities for more accurate diagnosis and the development of personalized treatment methods.

Keywords

resting-state functional MRI / functional MRI / fMRI insomnia / connectome / functional brain connections / sleep disorders / polysomnography

Cite this article

Download citation ▾
Anastasia A. Borshevetskaya, Alexander Yu. Efimtsev, Gennady E. Trufanov, Yurii V. Sviryaev, Valeria V. Amelina, Konstantin I. Sebelev, Yana A. Filin, Daniil A. Beregovskii. Functional study of the brain based on magnetic resonance imaging in patients with insomnia disorders. Russian Military Medical Academy Reports, 2024, 43(3): 261-268 DOI:10.17816/rmmar634084

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burchakov DI, Tardov MV. Insomnia: origins, treatment and clinical vignettes. Consilium Medicum. 2020;22(2):75–82. (In Russ.) EDN: CCDHJH doi: 10.26442/20751753.2020.2.200101

[2]

Бурчаков Д.И., Тардов М.В. Инсомния (бессонница): причины, методы лечения и клинические ситуации // Consilium Medicum. 2020. T. 22, № 2. C. 75–82. EDN: CCDHJH doi: 10.26442/20751753.2020.2.200101

[3]

Burchakov DI, Tardov MV. Insomnia: origins, treatment and clinical vignettes. Consilium Medicum. 2020;22(2):75–82. (In Russ.) EDN: CCDHJH doi: 10.26442/20751753.2020.2.200101

[4]

Strygin KN, Poluektov MG. Insomnia. Medical Council. 2017;(S):52–58. (In Russ.) EDN: XUYAWZ doi: 10.21518/2079-701X-2017-0-52-58

[5]

Стрыгин К.Н., Полуэктов М.Г. Инсомния // Медицинский совет. 2017. № S. C. 52–58. EDN: XUYAWZ doi: 10.21518/2079-701X-2017-0-52-58

[6]

Strygin KN, Poluektov MG. Insomnia. Medical Council. 2017;(S):52–58. (In Russ.) EDN: XUYAWZ doi: 10.21518/2079-701X-2017-0-52-58

[7]

Baymukanov AM, Bulavina IA, Petrova GA, et al. Sleep apnea in patients with atrial fibrillation. Lechebnoye delo. 2022;(2):132–136. (In Russ.) EDN: VTGDHZ doi: 10.24412/2071-5315-2022-12817

[8]

Баймуканов А.М., Булавина И.А., Петрова Г.А., и др. Апноэ сна у пациентов с фибрилляцией предсердий // Лечебное дело. 2022. № 2. С. 132–136. EDN: VTGDHZ doi: 10.24412/2071-5315-2022-12817

[9]

Baymukanov AM, Bulavina IA, Petrova GA, et al. Sleep apnea in patients with atrial fibrillation. Lechebnoye delo. 2022;(2):132–136. (In Russ.) EDN: VTGDHZ doi: 10.24412/2071-5315-2022-12817

[10]

Laugsand LE, Strand LB, Vatten LJ, et al. Insomnia symptoms and risk for unintentional fatal injuries-the HUNT Study. Sleep. 2014;37(11):1777–1786. doi: 10.5665/sleep.4170

[11]

Laugsand L.E., Strand L.B., Vatten L.J., et al. Insomnia symptoms and risk for unintentional fatal injuries-the HUNT Study // Sleep. 2014. Vol. 37, N 11. P. 1777–1786. doi: 10.5665/sleep.4170

[12]

Laugsand LE, Strand LB, Vatten LJ, et al. Insomnia symptoms and risk for unintentional fatal injuries-the HUNT Study. Sleep. 2014;37(11):1777–1786. doi: 10.5665/sleep.4170

[13]

Poluektov MG, Akarachkova ES, Dovgan EV, et al. Management of patients with insomnia and polymorbidity: expert consensus. Zh Nevrol Psikhiatr Im S S Korsakova. 2023;123(5–2): 49–57. (In Russ.) EDN: EVPUSF doi: 10.17116/jnevro202312305249

[14]

Полуэктов М.Г., Акарачкова Е.С., Довгань Е.В., и др. Ведение пациентов с инсомнией при полиморбидной патологии: консенсус экспертов // Журнал неврологии и психиатрии им. С.С. Корсакова. 2023. T. 123, № 5–2. C. 49–57. EDN: EVPUSF doi: 10.17116/jnevro202312305249

[15]

Poluektov MG, Akarachkova ES, Dovgan EV, et al. Management of patients with insomnia and polymorbidity: expert consensus. Zh Nevrol Psikhiatr Im S S Korsakova. 2023;123(5–2): 49–57. (In Russ.) EDN: EVPUSF doi: 10.17116/jnevro202312305249

[16]

Rundo JV, Downey R3rd. Polysomnography. Handbook of Clinical Neurology Volume. 2019;160:381–392. doi: 10.1016/B978-0-444-64032-1.00025-4

[17]

Rundo J.V., Downey R. 3rd. Polysomnography // Handbook of Clinical Neurology. 2019. Vol. 160. P. 381–392. doi: 10.1016/B978-0-444-64032-1.00025-4

[18]

Rundo JV, Downey R3rd. Polysomnography. Handbook of Clinical Neurology Volume. 2019;160:381–392. doi: 10.1016/B978-0-444-64032-1.00025-4

[19]

Surikova NA, Glukhova AS. Obstructive sleep apnea syndrome: literature review. CardioSomatics. 2023;14(1):67–76. (In Russ.) EDN: MTMATB doi: 10.17816/CS321374

[20]

Сурикова Н.А., Глухова А.С. Синдром обструктивного апноэ сна: обзор литературы // CardioСоматика. 2023. Т. 14, № 1. С. 67–76. EDN: MTMATB doi: 10.17816/CS321374

[21]

Surikova NA, Glukhova AS. Obstructive sleep apnea syndrome: literature review. CardioSomatics. 2023;14(1):67–76. (In Russ.) EDN: MTMATB doi: 10.17816/CS321374

[22]

Kim SG, Bandettini PA. Principles of BOLD Functional MRI. In: Faro SH, Mohamed FB, Law M, Ulmer JL. Functional Neuroradiology: Principles and Clinical Applications. 2012. P. 293–303. doi: 10.1007/978-1-4419-0345-7_16

[23]

Kim S.G., Bandettini P.A. Principles of BOLD Functional MRI. In: Faro S.H., Mohamed F.B., Law M., Ulmer J.L. Functional Neuroradiology: Principles and Clinical Applications. 2012. P. 293–303. doi: 10.1007/978-1-4419-0345-7_16

[24]

Kim SG, Bandettini PA. Principles of BOLD Functional MRI. In: Faro SH, Mohamed FB, Law M, Ulmer JL. Functional Neuroradiology: Principles and Clinical Applications. 2012. P. 293–303. doi: 10.1007/978-1-4419-0345-7_16

[25]

Kim T, Masamoto K, Hendrich K, Kim S-G. Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI. J Cereb Blood Flow Metab. 2007;27(6):1235–1247. doi: 10.1038/sj.jcbfm.9600429

[26]

Kim T,. Masamoto K., Hendrich K., Kim S.G. Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI // J. Cereb. Blood Flow Metab. 2007. Vol. 27, N 6. P. 1235–1247. doi: 10.1038/sj.jcbfm.9600429

[27]

Kim T, Masamoto K, Hendrich K, Kim S-G. Arterial versus total blood volume changes during neural activity-induced cerebral blood flow change: implication for BOLD fMRI. J Cereb Blood Flow Metab. 2007;27(6):1235–1247. doi: 10.1038/sj.jcbfm.9600429

[28]

Eklund A, Nichols T, Andersson M, Knutsson H. Empirically investigating the statistical validity of SPM, FSL and AFNI for single subject fMRI analysis. In: 2015 IEEE12th International Symposium on Biomedical Imaging (ISBI). Brooklyn, NY, USA; 2015. P. 1376–1380. doi: 10.1109/ISBI.2015.7164132

[29]

Eklund A., Nichols T., Andersson M., Knutsson H. Empirically investigating the statistical validity of SPM, FSL and AFNI for single subject fMRI analysis. In: 2015 IEEE12th International Symposium on Biomedical Imaging (ISBI). Brooklyn, NY, USA, 2015. P. 1376–1380. doi: 10.1109/ISBI.2015.7164132

[30]

Eklund A, Nichols T, Andersson M, Knutsson H. Empirically investigating the statistical validity of SPM, FSL and AFNI for single subject fMRI analysis. In: 2015 IEEE12th International Symposium on Biomedical Imaging (ISBI). Brooklyn, NY, USA; 2015. P. 1376–1380. doi: 10.1109/ISBI.2015.7164132

[31]

Zang ZX, Yan CG, Dong ZY, et al. Granger causality analysis implementation on MATLAB: A graphic user interface toolkit for fMRI data processing. Journal of Neuroscience Methods. 2012;203(2): 418–426. doi: 10.1016/j.jneumeth.2011.10.006

[32]

Zang Z.X., Yan C.G., Dong Z.Y., et al. Granger causality analysis implementation on MATLAB: A graphic user interface toolkit for fMRI data processing // Journal of Neuroscience Methods. 2012. Vol. 203, Issue 2. P. 418–426. doi: 10.1016/j.jneumeth.2011.10.006

[33]

Zang ZX, Yan CG, Dong ZY, et al. Granger causality analysis implementation on MATLAB: A graphic user interface toolkit for fMRI data processing. Journal of Neuroscience Methods. 2012;203(2): 418–426. doi: 10.1016/j.jneumeth.2011.10.006

[34]

Zigmantovich AS, Sharova EV, Kopachka MМ, et al. Changes in resting fMRI networks in patients with severe traumatic brain injury during therapeutic rhythmic transcranial magnetic stimulation (case report). Obshchaya reanimatologiya. 2022;18(2):53–64. (In Russ.) EDN: INDIYM doi: 10.15360/1813-9779-2022-2-53-64

[35]

Зигмантович А.С., Шарова Е.В., Копачка М. М. и др. Изменения сетей покоя фМРТ у пациентов с тяжелой черепно-мозговой травмой при терапевтической ритмической транскраниальной магнитной стимуляции (клиническое наблюдение) // Общая реаниматология. 2022. T. 18, № 2. C. 53–64. EDN: INDIYM doi: 10.15360/1813-9779-2022-2-53-64

[36]

Zigmantovich AS, Sharova EV, Kopachka MМ, et al. Changes in resting fMRI networks in patients with severe traumatic brain injury during therapeutic rhythmic transcranial magnetic stimulation (case report). Obshchaya reanimatologiya. 2022;18(2):53–64. (In Russ.) EDN: INDIYM doi: 10.15360/1813-9779-2022-2-53-64

[37]

Etindele Sosso FA. Measuring sleep health disparities with polysomnography: a systematic review of preliminary findings. Clocks & Sleep. 2022;4(1):80–87. doi: 10.3390/clockssleep4010009

[38]

Etindele Sosso F.A. Measuring sleep health disparities with polysomnography: a systematic review of preliminary findings // Clocks & Sleep. 2022. Vol. 4, N 1. P. 80–87. doi: 10.3390/clockssleep4010009

[39]

Etindele Sosso FA. Measuring sleep health disparities with polysomnography: a systematic review of preliminary findings. Clocks & Sleep. 2022;4(1):80–87. doi: 10.3390/clockssleep4010009

RIGHTS & PERMISSIONS

Eco-Vector

PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

/