Resting state functional magnetic resonance imaging in patients with multiple sclerosis before and after high-dose immunosuppressive therapy and autologous hemopoietic stem cell transplantation

Elena A. Potemkina , Artem G. Trufanov , Alexander Yu. Efimtsev , Aleksey Yu. Polushin , Victoria V. Volgina , Yana A. Filin

Russian Military Medical Academy Reports ›› 2024, Vol. 43 ›› Issue (3) : 291 -299.

PDF (1826KB)
Russian Military Medical Academy Reports ›› 2024, Vol. 43 ›› Issue (3) :291 -299. DOI: 10.17816/rmmar632532
Original articles
research-article

Resting state functional magnetic resonance imaging in patients with multiple sclerosis before and after high-dose immunosuppressive therapy and autologous hemopoietic stem cell transplantation

Author information +
History +
PDF (1826KB)

Abstract

BACKGROUND: Multiple sclerosis is a chronic autoimmune disease characterized by multifocal foci of demyelination in the central nervous system, usually affecting people of working age. The disease causes damage to the blood-brain barrier, the development of multifocal inflammation, destruction of the myelin sheath of axons and various degrees of damage. It is clinically manifested by restriction of motor activity, visual acuity, as well as other symptoms leading to loss of performance and disability of the patient.

AIM: determination of changes in the functional connectivity of brain neural networks in patients with multiple sclerosis before and after high-dose immunosuppressive therapy and autologous

hematopoietic stem cell transplantation by performing functional magnetic resonance imaging at rest.

MATERIALS AND METHODS: The data of functional magnetic resonance imaging of patients with multiple sclerosis were analyzed in dynamics before and after the use of high-dose immunosuppressive therapy followed by autologous hematopoietic stem cell transplantation. The study involved 25 patients with a verified diagnosis of multiple sclerosis. Each underwent complex magnetic resonance imaging at two time points (before and after high-dose immunosuppressive therapy followed by autologous hematopoietic stem cell transplantation) with a difference of 12 months, which included structural magnetic resonance imaging - in order to exclude the presence of pathological foci in the brain (in addition to foci of multiple sclerosis) and functional magnetic resonance imaging.-resonance imaging at rest — to assess functional connectivity. Also, according to the method generally accepted in classical neurology, a clinical neurological examination was performed.

RESULTS: At the stage of comparing data on the two groups obtained using functional magnetic resonance imaging at rest, changes in functional activity were detected in various parts of the brain, presumably responsible for clinical differences in the studied groups.

CONCLUSION: Currently, the links between brain structures and morphological changes that cause cognitive impairment in multiple sclerosis are being studied. To predict the progression of the disease, the development of biomarkers, including those based on functional magnetic resonance imaging, is required. Evaluating changes in the functional connectivity of brain neural networks can help personalize therapeutic and rehabilitation approaches.

Keywords

brain neural networks / default mode network / functional MRI / resting-state functional MRI / magnetic resonance imaging / multiple sclerosis / stem cell transplantation

Cite this article

Download citation ▾
Elena A. Potemkina, Artem G. Trufanov, Alexander Yu. Efimtsev, Aleksey Yu. Polushin, Victoria V. Volgina, Yana A. Filin. Resting state functional magnetic resonance imaging in patients with multiple sclerosis before and after high-dose immunosuppressive therapy and autologous hemopoietic stem cell transplantation. Russian Military Medical Academy Reports, 2024, 43(3): 291-299 DOI:10.17816/rmmar632532

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Prosperini L, Piattella MC, Giannì C, Pantano P. Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis. Neural Plast. 2015;2015:481574. doi: 10.1155/2015/481574

[2]

Prosperini L., Piattella M.C., Giannì C., Pantano P. Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis // Neural Plast. 2015. Vоl. 2015. Art. 481574. doi: 10.1155/2015/481574

[3]

Prosperini L, Piattella MC, Giannì C, Pantano P. Functional and Structural Brain Plasticity Enhanced by Motor and Cognitive Rehabilitation in Multiple Sclerosis. Neural Plast. 2015;2015:481574. doi: 10.1155/2015/481574

[4]

Clinical guidelines — Multiple sclerosis — 2022–2023–2024 (13.07.2022) — Approved by the Ministry of Health of the Russian Federation. As of July 13, 2022 on the website of the Ministry of Health of the Russian Federation. Available from: http://disuria.ru/_ld/12/1226_kr22G35p0MZ.pdf (In Russ.)

[5]

Клинические рекомендации — Рассеянный склероз — 2022–2023–2024 (13.07.2022) — Утверждены Минздравом РФ. По состоянию на 13.07.2022 на сайте МЗ РФ. Режим доступа: http://disuria.ru/_ld/12/1226_kr22G35p0MZ.pdf (дата обращения: 20.04.2024).

[6]

Clinical guidelines — Multiple sclerosis — 2022–2023–2024 (13.07.2022) — Approved by the Ministry of Health of the Russian Federation. As of July 13, 2022 on the website of the Ministry of Health of the Russian Federation. Available from: http://disuria.ru/_ld/12/1226_kr22G35p0MZ.pdf (In Russ.)

[7]

Hejazi S, Karwowski W, Farahani FV, et al. Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci. 2023;13(2):246. doi: 10.3390/brainsci13020246

[8]

Hejazi S., Karwowski W., Farahani F.V., et al. Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review // Brain Sci. 2023. Vоl. 13, N 2. P. 246. doi: 10.3390/brainsci13020246

[9]

Hejazi S, Karwowski W, Farahani FV, et al. Graph-Based Analysis of Brain Connectivity in Multiple Sclerosis Using Functional MRI: A Systematic Review. Brain Sci. 2023;13(2):246. doi: 10.3390/brainsci13020246

[10]

Giorgio A, De Stefano N. Advanced Structural and Functional Brain MRI in Multiple Sclerosis. Semin Neurol. 2016;36(2):163–176. doi: 10.1055/s-0036-1579737

[11]

Giorgio A., De Stefano N. Advanced Structural and Functional Brain MRI in Multiple Sclerosis // Semin. Neurol. 2016. Vоl. 36, N 2. P. 163–176. doi: 10.1055/s-0036-1579737

[12]

Giorgio A, De Stefano N. Advanced Structural and Functional Brain MRI in Multiple Sclerosis. Semin Neurol. 2016;36(2):163–176. doi: 10.1055/s-0036-1579737

[13]

Rocca MA, Schoonheim MM, Valsasina P, et al. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022;35:103076. doi: 10.1016/j.nicl.2022.103076

[14]

Rocca M.A., Schoonheim M.M., Valsasina P., et al. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective // Neuroimage Clin. 2022. Vоl. 35. Art. 103076. doi: 10.1016/j.nicl.2022.103076

[15]

Rocca MA, Schoonheim MM, Valsasina P, et al. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022;35:103076. doi: 10.1016/j.nicl.2022.103076

[16]

Manca R, Sharrack B, Paling D, et al. Brain connectivity and cognitive processing speed in multiple sclerosis: A systematic review. J Neurol Sci. 2018;388:115–127. doi: 10.1016/j.jns.2018.03.003

[17]

Manca R., Sharrack B., Paling D., et al. Brain connectivity and cognitive processing speed in multiple sclerosis: A systematic review // J. Neurol. Sci. 2018. Vоl. 388. P. 115–127. doi: 10.1016/j.jns.2018.03.003

[18]

Manca R, Sharrack B, Paling D, et al. Brain connectivity and cognitive processing speed in multiple sclerosis: A systematic review. J Neurol Sci. 2018;388:115–127. doi: 10.1016/j.jns.2018.03.003

[19]

Rocca MA, De Meo E, Filippi M. Functional MRI in investigating cognitive impairment in multiple sclerosis. Acta Neurol Scand. 2016;134 Suppl 200:39–46. doi: 10.1111/ane.12654

[20]

Rocca M.A., De Meo E., Filippi M. Functional MRI in investigating cognitive impairment in multiple sclerosis // Acta Neurol. Scand. 2016. Vоl. 134, Suppl 200. P. 39–46. doi: 10.1111/ane.12654

[21]

Rocca MA, De Meo E, Filippi M. Functional MRI in investigating cognitive impairment in multiple sclerosis. Acta Neurol Scand. 2016;134 Suppl 200:39–46. doi: 10.1111/ane.12654

[22]

Demir S. Multiple Sclerosis Functional Composite. Noro Psikiyatr Ars. 2018;55(Suppl 1):S66–S68. doi: 10.29399/npa.23349

[23]

Demir S. Multiple Sclerosis Functional Composite // Noro Psikiyatr. Ars. 2018. Vоl. 55, Suppl. 1, P. S66–S68. doi: 10.29399/npa.23349

[24]

Demir S. Multiple Sclerosis Functional Composite. Noro Psikiyatr Ars. 2018;55(Suppl 1):S66–S68. doi: 10.29399/npa.23349

[25]

Nelson F, Akhtar MA, Zúñiga E, et al. Novel fMRI working memory paradigm accurately detects cognitive impairment in multiple sclerosis. Mult Scler. 2017;23(6):836–847. doi: 10.1177/1352458516666186

[26]

Nelson F., Akhtar M.A., Zúñiga E., et al. Novel fMRI working memory paradigm accurately detects cognitive impairment in multiple sclerosis // Mult. Scler. 2017. Vоl. 23, N 6. P. 836–847. doi: 10.1177/1352458516666186

[27]

Nelson F, Akhtar MA, Zúñiga E, et al. Novel fMRI working memory paradigm accurately detects cognitive impairment in multiple sclerosis. Mult Scler. 2017;23(6):836–847. doi: 10.1177/1352458516666186

[28]

Jandric D, Doshi A, Scott R, et al. A Systematic Review of Resting-State Functional MRI Connectivity Changes and Cognitive Impairment in Multiple Sclerosis. Brain Connect. 2022;12(2):112–133. doi: 10.1089/brain.2021.0104

[29]

Jandric D., Doshi A., Scott R., et al. A Systematic Review of Resting-State Functional MRI Connectivity Changes and Cognitive Impairment in Multiple Sclerosis // Brain Connect. 2022. Vоl. 12, N 2. P. 112–133. doi: 10.1089/brain.2021.0104

[30]

Jandric D, Doshi A, Scott R, et al. A Systematic Review of Resting-State Functional MRI Connectivity Changes and Cognitive Impairment in Multiple Sclerosis. Brain Connect. 2022;12(2):112–133. doi: 10.1089/brain.2021.0104

[31]

Smallwood J, Bernhardt BC, Leech R, et al. The default mode network in cognition: a topographical perspective. Nat Rev Neurosci. 2021;22(8):503–513. doi: 10.1038/s41583-021-00474-4

[32]

Smallwood J., Bernhardt B.C., Leech R., et al. The default mode network in cognition: a topographical perspective // Nat. Rev. Neurosci. 2021. Vоl. 22, N 8. P. 503–513. doi: 10.1038/s41583-021-00474-4

[33]

Smallwood J, Bernhardt BC, Leech R, et al. The default mode network in cognition: a topographical perspective. Nat Rev Neurosci. 2021;22(8):503–513. doi: 10.1038/s41583-021-00474-4

[34]

Tavazzi E, Cazzoli M, Pirastru A, et al. Neuroplasticity and Motor Rehabilitation in Multiple Sclerosis: A Systematic Review on MRI Markers of Functional and Structural Changes. Front Neurosci. 2021;15:707675. doi: 10.3389/fnins.2021.707675

[35]

Tavazzi E., Cazzoli M., Pirastru A., et al. Neuroplasticity and Motor Rehabilitation in Multiple Sclerosis: A Systematic Review on MRI Markers of Functional and Structural Changes // Front. Neurosci. 2021. Vоl. 15. Art. 707675. doi: 10.3389/fnins.2021.707675

[36]

Tavazzi E, Cazzoli M, Pirastru A, et al. Neuroplasticity and Motor Rehabilitation in Multiple Sclerosis: A Systematic Review on MRI Markers of Functional and Structural Changes. Front Neurosci. 2021;15:707675. doi: 10.3389/fnins.2021.707675

[37]

Tavazzi E, Bergsland N, Cattaneo D, et al. Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study. J Neurol. 2018;265(6):1393–1401. doi: 10.1007/s00415-018-8859-y

[38]

Tavazzi E., Bergsland N., Cattaneo D., et al. Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study // J. Neurol. 2018. Vоl. 265, N 6. P. 1393–1401. doi: 10.1007/s00415-018-8859-y

[39]

Tavazzi E, Bergsland N, Cattaneo D, et al. Effects of motor rehabilitation on mobility and brain plasticity in multiple sclerosis: a structural and functional MRI study. J Neurol. 2018;265(6):1393–1401. doi: 10.1007/s00415-018-8859-y

[40]

Tolf A, Fagius J, Carlson K, et al. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol Scand. 2019;140(5):320–327. doi: 10.1111/ane.13147

[41]

Tolf A., Fagius J., Carlson K., et al. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation // Acta Neurol. Scand. 2019. Vоl. 140, N 5. P. 320–327. doi: 10.1111/ane.13147

[42]

Tolf A, Fagius J, Carlson K, et al. Sustained remission in multiple sclerosis after hematopoietic stem cell transplantation. Acta Neurol Scand. 2019;140(5):320–327. doi: 10.1111/ane.13147

[43]

Msheik A, Assi F, Hamed F, et al. Stem Cell Transplantation for Multiple Sclerosis: A 2023 Review of Published Studies. Cureus. 2023;15(10):e47972. doi: 10.7759/cureus.47972

[44]

Msheik A., Assi F., Hamed F., et al. Stem Cell Transplantation for Multiple Sclerosis: A 2023 Review of Published Studies // Cureus. 2023. Vоl. 15, N 10. P. e47972. doi: 10.7759/cureus.47972

[45]

Msheik A, Assi F, Hamed F, et al. Stem Cell Transplantation for Multiple Sclerosis: A 2023 Review of Published Studies. Cureus. 2023;15(10):e47972. doi: 10.7759/cureus.47972

[46]

Nicholas RS, Rhone EE, Mariottini A, et al. Autologous Hematopoietic Stem Cell Transplantation in Active Multiple Sclerosis: A Real-world Case Series. Neurology. 2021;97(9):e890–e901. doi: 10.1212/WNL.0000000000012449

[47]

Nicholas R.S., Rhone E.E., Mariottini A., et al. Autologous Hematopoietic Stem Cell Transplantation in Active Multiple Sclerosis: A Real-world Case Series // Neurology. 2021. Vоl. 97, N 9. P. e890–e901. doi: 10.1212/WNL.0000000000012449

[48]

Nicholas RS, Rhone EE, Mariottini A, et al. Autologous Hematopoietic Stem Cell Transplantation in Active Multiple Sclerosis: A Real-world Case Series. Neurology. 2021;97(9):e890–e901. doi: 10.1212/WNL.0000000000012449

[49]

Bonavita S, Sacco R, Esposito S, et al. Default mode network changes in multiple sclerosis: a link between depression and cognitive impairment? Eur J Neurol. 2016;24(1):27–36. doi:10.1111/ene.13112

[50]

Bonavita S., Sacco R., Esposito S., et al. Default mode network changes in multiple sclerosis: a link between depression and cognitive impairment? // Eur. J. Neurol. 2016. Vоl. 24, N 1. P. 27–36. doi:10.1111/ene.13112

[51]

Bonavita S, Sacco R, Esposito S, et al. Default mode network changes in multiple sclerosis: a link between depression and cognitive impairment? Eur J Neurol. 2016;24(1):27–36. doi:10.1111/ene.13112

RIGHTS & PERMISSIONS

Eco-Vector

PDF (1826KB)

119

Accesses

0

Citation

Detail

Sections
Recommended

/