Antibacterial wound coating based on chitosan and povidone, obtained by 3D printing
Konstantin P. Golovko , Vladimir E. Yudin , Dmitriy V. Ovchinnikov , Il’ya A. Barsuk , Elena М. Ivan’kova , Viktor N. Alexandrov , Yuliya A. Nashchekina , Ekaterina M. Gorgina , Svetlana A. Bozhkova
Russian Military Medical Academy Reports ›› 2024, Vol. 43 ›› Issue (1) : 23 -34.
Antibacterial wound coating based on chitosan and povidone, obtained by 3D printing
The objective of this study was to develop a method for forming an antimicrobial wound coating based on chitosan and polyvinylpyrrolidone using 3D printing technology.
The properties of the coating were then studied in vitro and in vivo to improve the treatment outcomes of deep burns. The resulting coating was a 4% hydrogel of medium molecular weight chitosan with the addition of 1% povidone iodine and dermal fibroblasts. After transplantation, the coating was covered with “Foliderm” film. The coating was formed using an extrusion 3D bioprinter, with printing parameters determined experimentally. The samples were first studied in vitro. Scanning electron microscopy was used to evaluate the coating’s microarchitecture and its interaction with dermal fibroblasts. A colorimetric test was conducted to assess cell metabolic activity and cytotoxicity, and antimicrobial activity against reference strains of Staphylococcus aureus was analyzed. An experiment was conducted to evaluate the in vivo properties of the coating. Nineteen male Wistar rats were used in the study. An injury was inflicted that resulted in a deep thermal contact burn, affecting all layers of skin and subcutaneous fatty tissue, with an area of approximately 20 cm2. The animals were divided into three groups: experimental (with the application of the developed coating), comparative (using the traditional and widespread method of treatment with Levomekol ointment) and control (without treatment).
The study lasted for 38 days and found that the developed coating is highly biocompatible, atraumatic, elastic, and adheres well to wounds. Chitosan was used to create a porous structure with channels running parallel to each other. The coating cells are evenly distributed on the surface of the matrix, specifically on the walls of the pores. The inclusion of 1% povidone iodine in the polymer resulted in high antimicrobial activity without significantly affecting the activity of the cells in the composition. The experiment on applying a coating for treating deep thermal burns demonstrated that the developed coating had a positive effect on the wound healing process. This effect was characterized by a higher rate of epithelization and a significantly lower incidence of infectious complications compared to other experimental groups. In the histological study, the experimental group outperformed the control and comparison groups in the quality of the formed granulation tissue, the number of newly formed capillaries, and the severity of the local inflammatory process.
3D bioprinting / chitosan / fibroblasts / povidone iodine / thermal burns / wound coating
| [1] |
Fan L, Yang H, Yang J, Hu J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr Polym. 2016;146:427–434. doi: 10.1016/j.carbpol.2016.03.002 |
| [2] |
Fan L., Yang H., Yang J., Hu J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings // Carbohydr. Polym. 2016. Vol. 146. P. 427–434. doi: 10.1016/j.carbpol.2016.03.002 |
| [3] |
Jayakumar R, Prabaharan M, Kumar PS, et. al. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv. 2011;29(3):322–337. doi: 10.1016/j.biotechadv.2011.01.005 |
| [4] |
Jayakumar R., Prabaharan M., Kumar P.S., et. al. Biomaterials based on chitin and chitosan in wound dressing applications // Biotechnol. Adv. 2011. Vol. 29, N. 3. P. 322–337. doi: 10.1016/j.biotechadv.2011.01.005 |
| [5] |
Rath G, Hussain T, Chauhan G, et. al. Development and characterization of cefazolin-loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds. Mater Sci Eng C Mater Biol Appl. 2016;58:242–253. doi: 10.1016/j.msec.2015.08.050 |
| [6] |
Rath G., Hussain T., Chauhan G., et. al. Development and characterization of cefazolin-loaded zinc oxide nanoparticles composite gelatin nanofiber mats for postoperative surgical wounds // Mater. Sci. Eng. C Mater. Biol. Appl. 2016. Vol. 58. P. 242–253. doi: 10.1016/j.msec.2015.08.050 |
| [7] |
Khorasani MT, Joorabloo A, Adeli H, et. al. Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials. Carbohydr Polym. 2019;207:542–554. doi: 10.1016/j.carbpol.2018.12.021 |
| [8] |
Khorasani M.T., Joorabloo A., Adeli H., et. al. Design and optimization of process parameters of polyvinyl (alcohol)/chitosan/nano zinc oxide hydrogels as wound healing materials // Carbohydr. Polym. 2019. Vol. 207. P. 542–554. doi: 10.1016/j.carbpol.2018.12.021 |
| [9] |
Supare V, Wadher K, Umekar M. Experimental design: Approaches and applications in development of pharmaceutical drug delivery system. Journal of Drug Delivery and Therapeutics. 2021;11(4-S): 154–161. doi: 10.22270/jddt.v11i4-S.4908 |
| [10] |
Supare V., Wadher K., Umekar M. Experimental design: Approaches and applications in development of pharmaceutical drug delivery system // Journal of Drug Delivery and Therapeutics. 2021. Vol. 11, N. 4-S. P. 154–161. doi: 10.22270/jddt.v11i4-S.4908 |
| [11] |
Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. European Polymer Journal. 2013;49(4):780–792. doi: 10.1016/j.eurpolymj.2012.12.009 |
| [12] |
Croisier F., Jérôme C. Chitosan-based biomaterials for tissue engineering // European Polymer Journal. 2013. Vol. 49, N. 4. P. 780–792. doi: 10.1016/j.eurpolymj.2012.12.009 |
| [13] |
Ahmed S, Ikram S. Chitosan Based Scaffolds and Their Applications in Wound Healing. Achievements in the Life Sciences. 2016;10(1):27–37. doi: 10.1016/j.als.2016.04.001 |
| [14] |
Ahmed S., Ikram S. Chitosan Based Scaffolds and Their Applications in Wound Healing // Achievements in the Life Sciences. 2016. Vol. 10, N. 1. P. 27–37. doi: 10.1016/j.als.2016.04.001 |
| [15] |
Cardoso AM, de Oliveira EG, Coradini K, et al. Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing. Mater Sci Eng C Mater Biol Appl. 2019;96:205–217. doi: 10.1016/j.msec.2018.11.013 |
| [16] |
Cardoso A.M., de Oliveira E.G., Coradini K., et al. Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing // Mater. Sci. Eng. C Mater. Biol. Appl. 2019. Vol. 96. P. 205–217. doi: 10.1016/j.msec.2018.11.013 |
| [17] |
Morozov AM, Belyak MA. On the possibility of using povidone-iodine in surgical practice. Ambulatory Surgery. 2021;18(2):68–76. (In Russ.) doi: 10.21518/1995-1477-2021-18-2-68-76 |
| [18] |
Морозов А.М., Беляк М.А. О возможности применения повидон-йода в хирургической практике // Амбулаторная хирургия. 2021. Т. 18, № 2. С. 68–76. doi: 10.21518/1995-1477-2021-18-2-68-76 |
| [19] |
Katorkin SE, Bystrov SA, Bezborodov AI, et al. Primenenie rastvora povidon-joda pri operaciyah na pryamoj kishke. RMJ. Medical Review. 2018;(2(2)):52–55. (In Russ.) |
| [20] |
Каторкин С.Е., Быстров С.А., Безбородов А.И., и др. Применение раствора повидон-йода при операциях на прямой кишке // РМЖ. Медицинское обозрение. 2018. № 2 (2). С. 52–55. |
| [21] |
Franco P, De Marco I. The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers (Basel). 2020;12(5):1114. doi: 10.3390/polym12051114 |
| [22] |
Franco P., De Marco I. The Use of Poly(N-vinyl pyrrolidone) in the Delivery of Drugs: A Review // Polymers (Basel). 2020. Vol. 12, N. 5. P. 1114. doi: 10.3390/polym12051114 |
| [23] |
De Lima GG, de Lima DW, de Oliveira MJ, et. al. Synthesis and in vivo behaviour of PVP/CMC/Agar hydrogel membranes impregnated with silver nanoparticles for wound healing applications. ACS Appl Bio Mater. 2018;1(6):1842–1852. doi: 10.1021/acsabm.8b00369 |
| [24] |
De Lima G.G., de Lima D.W., de Oliveira M.J., et. al. Synthesis and in vivo behaviour of PVP/CMC/Agar hydrogel membranes impregnated with silver nanoparticles for wound healing applications // ACS Appl. Bio Mater. 2018. Vol. 1, N. 6. P. 1842–1852. doi: 10.1021/acsabm.8b00369 |
| [25] |
Ramalingam V, Varunkumar K, Ravikumar V, Rajaram R. Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer. Sci Rep. 2018;8(1):3815. doi: 10.1038/s41598-018-22172-5 |
| [26] |
Ramalingam V., Varunkumar K., Ravikumar V., Rajaram R. Target delivery of doxorubicin tethered with PVP stabilized gold nanoparticles for effective treatment of lung cancer // Sci. Rep. 2018. Vol. 8, N. 1. P. 3815. doi: 10.1038/s41598-018-22172-5 |
| [27] |
Zhao P, Gu H, Mi H, et al. Fabrication of scaffolds in tissue engineering: A review. Frontiers of Mechanical Engineering. 2017;13(1):107–119. doi: 10.1007/s11465-018-0496-8 |
| [28] |
Zhao P., Gu H., Mi H., et al. Fabrication of scaffolds in tissue engineering: A review // Frontiers of Mechanical Engineering. 2017. Vol. 13, N. 1. P. 107–119. doi: 10.1007/s11465-018-0496-8 |
| [29] |
Eltom A, Zhong G, Muhammad A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review. Advances in Materials Science and Engineering. 2019;2019(4):1–13. doi: 10.1155/2019/3429527 |
| [30] |
Eltom A., Zhong G., Muhammad A. Scaffold Techniques and Designs in Tissue Engineering Functions and Purposes: A Review // Advances in Materials Science and Engineering. 2019. Vol. 2019, N. 4. P. 1–13. doi: 10.1155/2019/3429527 |
| [31] |
Long J, Etxeberria AE, Nand AV, et. al. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Mater Sci Eng C Mater Biol Appl. 2019;104:109873. doi: 10.1016/j.msec.2019.109873 |
| [32] |
Long J., Etxeberria A.E., Nand A.V., et. al. A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery // Mater. Sci. Eng. C Mater. Biol. Appl. 2019. Vol. 104. P. 109873. doi: 10.1016/j.msec.2019.109873 |
| [33] |
Bergonzi C, Bianchera A, Remaggi G, et. al. 3D Printed Chitosan/Alginate Hydrogels for the Controlled Release of Silver Sulfadiazine in Wound Healing Applications: Design, Characterization and Antimicrobial Activity. Micromachines (Basel). 2023;14(1):137. doi: 10.3390/mi14010137 |
| [34] |
Bergonzi C., Bianchera A., Remaggi G., et. al. 3D Printed Chitosan/Alginate Hydrogels for the Controlled Release of Silver Sulfadiazine in Wound Healing Applications: Design, Characterization and Antimicrobial Activity // Micromachines (Basel). 2023. Vol. 14, N. 1. P. 137. doi: 10.3390/mi14010137 |
| [35] |
Kollamaram G, Croker DM, Walker GM, et al. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. International Journal of Pharmaceutics. 2018;545(1):144–152. doi: 10.1016/j.ijpharm.2018.04.055 |
| [36] |
Kollamaram G., Croker D.M., Walker G.M., et al. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs // International Journal of Pharmaceutics. 2018. Vol. 545. N. 1. P. 144–152. doi: 10.1016/j.ijpharm.2018.04.055 |
| [37] |
Okwuosa TC, Stefaniak D, Arafat B, et al. A Lower Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate Release Tablets. Pharm Res. 2016;33(11):2704–2712. doi: 10.1007/s11095-016-1995-0 |
| [38] |
Okwuosa T.C., Stefaniak D., Arafat B., et al. A Lower Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate Release Tablets // Pharm. Res. 2016. Vol. 33, N. 11. P. 2704–2712. doi: 10.1007/s11095-016-1995-0 |
| [39] |
Dores F, Kuźmińska M, Soares C, et al. Temperature and solvent facilitated extrusion based 3D printing for pharmaceuticals. Eur J Pharm Sci. 2020;152:105430. doi: 10.1016/j.ejps.2020.105430 |
| [40] |
Dores F., Kuźmińska M., Soares C., et al. Temperature and solvent facilitated extrusion based 3D printing for pharmaceuticals // Eur. J. Pharm. Sci. 2020. Vol. 152. P. 105430. doi: 10.1016/j.ejps.2020.105430 |
| [41] |
Ratsionalizatorskoe predlozheniye № 15307/2 ot 07.02.2022. Glushakov RI, Kokorina AA, Pyurveev SS. Sposob in’’ektsionnogo narkoza krys i krolikov dlya provedeniya dlitel’nykh operaciy v nauchnykh tselyakh. (In Russ.) |
| [42] |
Рационализаторское предложение № 15307/2 от 07.02.2022. Глушаков Р.И., Кокорина А.А., Пюрвеев С.С. Способ инъекционного наркоза крыс и кроликов для проведения длительных операций в научных целях. |
| [43] |
Patent RUS № 2023101459/ 27.04.2023. Byul. № 12. Barsuk IA, Golovko KP, Aleksandrov VN. Sposob modelirovaniya termicheskikh ozhogovykh ran razlichnoy stepeni tyazhesti u laboratornykh zhivotnykh. (In Russ.) |
| [44] |
Патент РФ на изобретение № 2023101459/ 27.04.2023. Бюл. № 12. Барсук И.А., Головко К.П., Александров В.Н. Способ моделирования термических ожоговых ран различной степени тяжести у лабораторных животных. |
| [45] |
Sharafutdinova IR, Mustafina ZZ, Gabitova AYа, et al. Iinnovative technologies in monitoring of rate of the adhesion of ras. European Student Scientific Journal. 2018;(4-1):177–179. (In Russ.) EDN: UPBTCG |
| [46] |
Шарафутдинова И.Р., Мустафина З.З., Габитова А.Я., и др. Инновационные технологии в мониторинге скорости заживления ран // Международный студенческий научный вестник. 2018. № 4-1. С. 177–179. EDN: UPBTCG |
| [47] |
Ivan’kova EM, Dobrovolskaya IP, Popryadukhin PV, et al. In-situ cryo-SEM investigation of porous structure formation of chitosan sponges. Polymer Testing. 2016;52:41–45. doi: 10.1016/j.polymertesting.2016.03.018 |
| [48] |
Ivan’kova E.M., Dobrovolskaya I.P., Popryadukhin P.V., et al. In-situ cryo-SEM investigation of porous structure formation of chitosan sponges // Polymer Testing. 2016. Vol. 52. P. 41–45. doi: 10.1016/j.polymertesting.2016.03.018 |
| [49] |
Dobrovolskaya IP, Yudin VE, Popryadukhin PV, Ivan’kova EM. Polymer matrices for tissue engineering. Monograph. Saint Petersburg: Izdatel’sko-poligraficheskaya assotsiatsiya universitetov Rossii Publ.; 2016. 223 р. |
| [50] |
Добровольская И.П., Юдин В.Е., Попрядухин П.В., Иванькова Е.М. Полимерные матрицы для тканевой инженерии. Монография. Санкт-Петербург: Издательско-полиграфическая ассоциация университетов России, 2016. 223 с. |
Eco-Vector
/
| 〈 |
|
〉 |