Modern technologies of early diagnosis of wound infection

Sergey A. Svistunov , Alexander A. Kuzin , Denis A. Zharkov , Evgeny V. Lantsov , Sergey A. Morozov , Irina A. Svistunova , Vitaly V. Shkarupa

Russian Military Medical Academy Reports ›› 2024, Vol. 43 ›› Issue (1) : 59 -68.

PDF
Russian Military Medical Academy Reports ›› 2024, Vol. 43 ›› Issue (1) :59 -68. DOI: 10.17816/rmmar622879
Reviews
review-article

Modern technologies of early diagnosis of wound infection

Author information +
History +
PDF

Abstract

The article presents an analysis of the data of modern literature devoted to the study of early diagnosis of wound infection. It is well known that wound healing is a very complex and dynamic mechanism of wound re-epithelialization. At the same time, the normal microflora of the skin plays an important function for maintaining homeostasis and the formation of the skin. There are about 1000 species of microorganisms belonging to the normal flora of human skin and do not cause any harm to healthy people. At the same time, there are microorganisms that, when they enter the wound, lead to the development of infectious complications of wounds as a result of a violation of the integrity of the skin. They include both gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and gram-negative bacteria (Escherichia coli, Proteus mirabilis, Pseudomonas aeruginosa, Enterobacter spp., Morganella spp., etc.). Early detection of these microorganisms will contribute to timely and high-quality treatment of wound infection. Currently, there are certain conditions that limit the use of microbiological research methods used to establish a clinical diagnosis of wound infection (long duration, labor intensity, required level of qualification of specialists, etc.). This dictates the need to develop new, fast and easy-to-use methods for diagnosing wound infection. To this end, a group of researchers from Russia (Skolkovo Institute of Science and Technology) and the USA (University of Texas at Austin) have recently developed wearable sensors for the diagnosis of wound infection. These sensors can be embedded in wound dressings and are able to detect certain biomarkers indicating the presence of wound infection. Among these biomarkers, pH and uric acid are the most commonly used, but there are many others (lactic acid, oxygenation, inflammatory mediators, bacterial metabolites or the bacteria themselves). Currently, the development of microelectronics, the emergence of biochemical sensors, active microfluidics and painless microneedles have led to the creation of new generations of wearable biosensors that provide completely new opportunities in the fight against wound infection.

Keywords

biomarkers / diagnostics / microorganisms / research / wearable biosensors / wound infection / wounds

Cite this article

Download citation ▾
Sergey A. Svistunov, Alexander A. Kuzin, Denis A. Zharkov, Evgeny V. Lantsov, Sergey A. Morozov, Irina A. Svistunova, Vitaly V. Shkarupa. Modern technologies of early diagnosis of wound infection. Russian Military Medical Academy Reports, 2024, 43(1): 59-68 DOI:10.17816/rmmar622879

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19(1):56–66. doi: 10.1016/S1473-3099(18)30605-4

[2]

Cassini A., Högberg L.D., Plachouras D., et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European economic area in 2015: a population-level modelling analysis // Lancet Infect. Dis. 2019. Vol. 19, N. 1. P. 56–66. doi: 10.1016/S1473-3099(18)30605-4

[3]

Magnano San Lio R, Favara G, Maugeri A, et al. How antimicrobial resistance is linked to climate change: an overview of two intertwined global challenges. Int J Environ Res Public Health. 2023;20(3):1681. doi: 10.3390/ijerph20031681

[4]

Magnano San Lio R., Favara G., Maugeri A., et al. How antimicrobial resistance is linked to climate change: an overview of two intertwined global challenges // Int. J. Environ. Res. Public. Health. 2023. Vol. 20, N. 3. P. 1681. doi: 10.3390/ijerph20031681

[5]

Svistunov SA, Kuzin AA, Suborova TN, et al. Features and directions for the prevention of health care-associated infections at the stage of specialized medical care. Bulletin of the Russian Military Medical Academy. 2019;21(3):174–177. (In Russ.)

[6]

Свистунов С.А., Кузин А.А., Суборова Т.Н., и др. Особенности и направления профилактики инфекций, связанных с оказанием медицинской помощи на этапе оказания специализированной медицинской помощи // Вестник Российской военно-медицинской академии. 2019. Т. 21, № 3. С. 174–177.

[7]

Potaturkina-Nesterova NI, ed. Skin microbiota in normal and pathological conditions. Ul’yanovsk: UlGTU Publishing Hоuse; 2014. 113 p. (In Russ.)

[8]

Микробиота кожи в норме и при патологии / Под ред. Н.И. Потатуркиной-Нестеровой. Ульяновск: УлГТУ, 2014. 113 с.

[9]

Bizina EV, Farafonova OV, Tarasova NV, Ermolaeva TN. Synthesis and application of magnetic molecularly imprinted tetracycline polymer nanoparticles in a piezoelectric sensor. Sorbcionny’e i khromatograficheskie processy. 2021;21(2):177–186. (In Russ.) doi: 10.17308/sorpchrom.2021.21/3352

[10]

Бизина Е.В., Фарафонова О.В., Тарасова Н.В., Ермолаева Т.Н. Синтез и применение магнитных молекулярно импринтированных тетрациклином полимерных наночастиц в пьезоэлектрическом сенсоре // Сорбционные и хроматографические процессы. 2021. Т. 21, № 2. С. 177–186. doi: 10.17308/sorpchrom.2021.21/3352

[11]

Gulij OI, Zajcev BD, Alsove’jdi AKM., et al. Biosensor systems for the determination of antibiotics. Biofizika. 2021;66(4):657–667. (In Russ.) doi: 10.31857/S0006302921040050

[12]

Гулий О.И., Зайцев Б.Д., Алсовэйди А.К.М., и др. Биосенсорные системы для определения антибиотиков // Биофизика. 2021. Т. 66, № 4. С. 657–667. doi: 10.31857/S0006302921040050

[13]

Ogarkov PI, Kuzin AA, Svistunov SA, et al. Promising technologies in the system of ensuring the sanitary and epidemiological welfare of troops. Military Medical Journal. 2016;337(3):92–94. (In Russ.) EDN: WQUTHP

[14]

Огарков П.И., Кузин А.А., Свистунов С.А., и др. Перспективные технологии в системе обеспечения санитарно-эпидемиологического благополучия войск // Военно-медицинский журнал. 2016. Т. 337, № 3. С. 92–94. EDN: WQUTHP

[15]

Trishkin DV, Fisun AYa, Kryukov EV, Vertiy BD. Military medicine and modern wars: historical experience and forecasts of what to expect and what to prepare for. In: State and prospects for the development of modern science in the direction of «Biotechnical systems and technologies»: Collection of articles of the III All-Russian Scientific and Technical Conference, Anapa. 2021 May 27–28. Anapa: Voenny’j innovacionny’j texnopolis “E’RA” Publ.; 2021. P. 8–16. (In Russ.) EDN UHYZMB

[16]

Тришкин Д.В., Фисун А.Я., Крюков Е.В., Вертий Б.Д. Военная медицина и современные войны: опыт истории и прогнозы, что ждать и к чему готовиться. В кн.: Состояние и перспективы развития современной науки по направлению «Биотехнические системы и технологии»: Сборник статей III Всероссийской научно-технической конференции, Анапа. 2021 г. 27–28 мая. Анапа: Военный инновационный технополис «ЭРА», 2021. С. 8–16. EDN UHYZMB

[17]

Ahmed A, Rushworth JV, Hirst NA, Millner PA. Biosensors for whole-cell bacterial detection. Clin Microbiol Rev. 2014;27(3):631–646. doi: 10.1128/CMR.00120-13

[18]

Ahmed A., Rushworth J.V., Hirst N.A., Millner P.A. Biosensors for whole-cell bacterial detection // Clin. Microbiol. Rev. 2014. Vоl. 27, N. 3. P. 631–646. doi: 10.1128/CMR.00120-13

[19]

Barchitta M, Quattrocchi A, Maugeri A, et al. The “Obiettivo Antibiotico” campaign on prudent use of antibiotics in Sicily, Italy: the pilot phase. Int J Environ Res Public Health. 2020;17(9):3077. doi: 10.3390/ijerph17093077

[20]

Barchitta M., Quattrocchi A., Maugeri A., et al. The “Obiettivo Antibiotico” campaign on prudent use of antibiotics in Sicily, Italy: the pilot phase // Int. J. Environ. Res. Public. Health. 2020. Vоl. 17, N. 9. P. 3077. doi: 10.3390/ijerph17093077

[21]

Caygill RL, Blair GE, Millner PA. A review on viral biosensors to detect human pathogens. Anal Chim Acta. 2010;681(1–2):8–15. doi: 10.1016/j.aca.2010.09.038

[22]

Caygill R.L., Blair G.E., Millner P.A. A review on viral biosensors to detect human pathogens // Anal. Chim. Acta. 2010. Vol. 681, N. 1–2. P. 8–15. doi: 10.1016/j.aca.2010.09.038

[23]

Chinnappan R, Eissa S, Alotaibi A, et al. In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for azlocillin determination in waste water. Anal Chim Acta. 2020;1101:149–156. doi: 10.1016/j.aca.2019.12.023

[24]

Chinnappan R., Eissa S., Alotaibi A., et al. In vitro selection of DNA aptamers and their integration in a competitive voltammetric biosensor for azlocillin determination in waste water // Anal. Chim. Acta. 2020. Vol. 1101. P. 149–156. doi: 10.1016/j.aca.2019.12.023

[25]

Cоleman WB, Tsоgalis GJ, eds. Diagnostic Molecular Pathology. A Guide to Applied Molecular Testing. Academic Press Elsevier Inc.; 2016. P. 541–561

[26]

Cоleman W.B., Tsоgalis G.J., eds. Diagnostic Molecular Pathology. A Guide to Applied Molecular Testing. Academic Press Elsevier Inc., 2016. P. 541–561

[27]

Duyen TT, Matsuura H, Ujiie K, et al. Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis. J Biosci Bioeng. 2017;123(1):96–100. doi: 10.1016/j.jbiosc.2016.07.015

[28]

Duyen T.T., Matsuura H., Ujiie K., et al. Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis // J. Biosci. Bioeng. 2017. Vol. 123, N. 1. P. 96–100. doi: 10.1016/j.jbiosc.2016.07.015

[29]

Gandra S, Alvarez-Uria G, Turner P, et al. Antimicrobial resistance surveillance in low-and middle-income countries: Progress and challenges in eight south Asian and southeast Asian countries. Clin Microbiol Rev. 2020;33(3):e00048–19. doi: 10.1128/CMR.00048-19

[30]

Gandra S., Alvarez-Uria G., Turner P., et al. Antimicrobial resistance surveillance in low-and middle-income countries: Progress and challenges in eight south Asian and southeast Asian countries // Clin. Microbiol. Rev. 2020. Vol. 33, N. 3. P. e00048–19. doi: 10.1128/CMR.00048-19

[31]

Hendriksen RS, Bortolaia V, Tate H, et al. Using genomics to track global antimicrobial resistance. Front Public Health. 2019;7:242. doi: 10.3389/fpubh.2019.00242

[32]

Hendriksen R.S., Bortolaia V., Tate H., et al. Using genomics to track global antimicrobial resistance // Front. Public. Health. 2019. Vol. 7. P. 242. doi: 10.3389/fpubh.2019.00242

[33]

Justino CIL, Duarte AC, Rocha-Santos TAP. Recent progress in biosensors for environmental monitoring: a review. Sensors (Basel). 2017;17(12):2918. doi: 10.3390/s17122918

[34]

Justino C.I.L., Duarte A.C., Rocha-Santos T.A.P. Recent progress in biosensors for environmental monitoring: a review // Sensors (Basel). 2017. Vol. 17, N. 12. P. 2918. doi: 10.3390/s17122918

[35]

Karbelkar AA, Furst AL. Electrochemical diagnostics for bacterial infectious diseases. ACS Infect Dis. 2020;6(7):1567–1571. doi: 10.1021/acsinfecdis.0c00342

[36]

Karbelkar A.A., Furst A.L. Electrochemical diagnostics for bacterial infectious diseases // ACS Infect. Dis. 2020. Vol. 6, N. 7. P. 1567–1571. doi: 10.1021/acsinfecdis.0c00342

[37]

Lai LM, Goon IY, Chuah K, et al. The biochemiresistor: an ultrasensitive biosensor for small organic molecules. Angew Chem Int Ed Engl. 2012;51(26):6456–6459. doi: 10.1002/anie.201202350

[38]

Lai L.M., Goon I.Y., Chuah K., et al. The biochemiresistor: an ultrasensitive biosensor for small organic molecules // Angew. Chem. Int. Ed. Engl. 2012. Vol. 51, N. 26. P. 6456–6459. doi: 10.1002/anie.201202350

[39]

Lau S, Fei J, Liu H, et al. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for inproving effective drug delivery. J Control Release. 2017;265:113–119. doi: 10.1016/j.jconrel.2016.08.031

[40]

Lau S., Fei J., Liu H., et al. Multilayered pyramidal dissolving microneedle patches with flexible pedestals for inproving effective drug delivery // J. Control. Release. 2017. Vol. 265. P. 113–119. doi: 10.1016/j.jconrel.2016.08.031

[41]

Laxminarayan R, Van Boeckel T, Frost I, et al. The lancet infectious diseases commission on antimicrobial resistance: 6 years later. Lancet Infect Dis. 2020;20(4):e51–60. doi: 10.1016/S1473-3099(20)30003-7

[42]

Laxminarayan R., Van Boeckel T., Frost I., et al. The lancet infectious diseases commission on antimicrobial resistance: 6 years later // Lancet Infect Dis. 2020. Vol. 20, N. 4. P. e51–60. doi: 10.1016/S1473-3099(20)30003-7

[43]

Liu Y, Hua X, Zhang M, et al. Recovery of steviol glycosides from industrial stevia by-product via crystallization and reversed-phase chromatography. Food Chem. 2021;344:128716. doi: 10.1016/j.foodchem.2020.128726

[44]

Liu Y., Hua X., Zhang M., et al. Recovery of steviol glycosides from industrial stevia by-product via crystallization and reversed-phase chromatography // Food Chem. 2021. Vol. 344. P. 128716. doi: 10.1016/j.foodchem.2020.128726

[45]

Majdinasab M, Mitsubayashi K, Marty JL. Optical and electrochemical sensors and biosensors for the detection of quinolones. Trends Biotechnol. 2019;37(8):898–915. doi: 10.1016/j.tibtech.2019.01.004

[46]

Majdinasab M., Mitsubayashi K., Marty J.L. Optical and electrochemical sensors and biosensors for the detection of quinolones // Trends Biotechnol. 2019. Vol. 37, N. 8. P. 898–915. doi: 10.1016/j.tibtech.2019.01.004

[47]

Munk P, Knudsen BE, Lukjancenko O, et al. Author correction: abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries. Nat Microbiol. 2018;3(10):1186. doi: 10.1038/s41564-018-0241-4

[48]

Munk P., Knudsen B.E., Lukjancenko O., et al. Author correction: abundance and diversity of the faecal resistome in slaughter pigs and broilers in nine European countries // Nat. Microbiol. 2018. Vol. 3, N. 10. P. 1186. doi: 10.1038/s41564-018-0241-4

[49]

Nag P, Sadani K, Mohapatra S, Mukherji S. Evanescent wave optical fiber sensors using enzymatic hydrolysis on nanostructured polyaniline for detection of β-lactam antibiotics in food and environment. Anal Chem. 2021;93(4):2299–2308. doi: 10.1021/acs.analchem.0c04169

[50]

Nag P., Sadani K., Mohapatra S., Mukherji S. Evanescent wave optical fiber sensors using enzymatic hydrolysis on nanostructured polyaniline for detection of β-lactam antibiotics in food and environment // Anal. Chem. 2021. Vol. 93, N. 4. P. 2299–2308. doi: 10.1021/acs.analchem.0c04169

[51]

Guliy OI, Bunin VD. Electro-optical Analysis as Sensing System for Detection and Diagnostics of Bacterial Cells. In: Chandra P, Pandey LM, eds. Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery. Singapore: Springer, 2020. P. 233–254. doi: 10.1007/978-981-15-4790-4_11

[52]

Guliy O.I., Bunin V.D. Electro-optical Analysis as Sensing System for Detection and Diagnostics of Bacterial Cells. In: Chandra P., Pandey L.M., eds. Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery. Singapore: Springer, 2020. P. 233–254. doi: 10.1007/978-981-15-4790-4_11

[53]

Guliy OI, Zaitsev BD, Borodina IA. New approach for determination of antimicrobial susceptibility to antibiotics by an acoustic sensor. Appl Microbiol Biotechnol. 2020;104(3):1283–1290. doi: 10.1007/s00253-019-10295-2

[54]

Guliy O.I., Zaitsev B.D., Borodina I.A. New approach for determination of antimicrobial susceptibility to antibiotics by an acoustic sensor // Appl. Microbiol. Biotechnol. 2020. Vol. 104, N. 3. P. 1283–1290. doi: 10.1007/s00253-019-10295-2

[55]

Rizzo L, Manaia C, Merlin C, et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ. 2013;447:345–360. doi: 10.1016/j.scitotenv.2013.01.032

[56]

Rizzo L., Manaia C., Merlin C., et al. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review // Sci. Total Environ. 2013. Vol. 447. P. 345–360. doi: 10.1016/j.scitotenv.2013.01.032

[57]

Simoska O, Stevenson KJ. Electrochemical sensors for rapid diagnosis of pathogens in real time. Analyst. 2019;144(22):6461–6478. doi: 10.1039/C9AN01747J

[58]

Simoska O., Stevenson K.J. Electrochemical sensors for rapid diagnosis of pathogens in real time // Analyst. 2019. Vol. 144, N. 22. P. 6461–6478. doi: 10.1039/C9AN01747J

[59]

Yang Y, Liu G, Ye C, Liu W. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan plateau. J Hazard Mater. 2019;361:283–293. doi: 10.1016/j.jhazmat.2018.09.002

[60]

Yang Y., Liu G., Ye C., Liu W. Bacterial community and climate change implication affected the diversity and abundance of antibiotic resistance genes in wetlands on the Qinghai-Tibetan plateau // J. Hazard. Mater. 2019. Vol. 361. P. 283–293. doi: 10.1016/j.jhazmat.2018.09.002

[61]

Yoo SM, Lee SY. Optical biosensors for the detection of pathogenic microorganisms. Trends Biotechnol. 2016;34(1):7–25. doi: 10.1016/j.tibtech.2015.09.012

[62]

Yoo S.M., Lee S.Y. Optical biosensors for the detection of pathogenic microorganisms // Trends Biotechnol. 2016. Vol. 34, N. 1. P. 7–25. doi: 10.1016/j.tibtech.2015.09.012

[63]

Gowers SAN, Freeman DME, Rawson TM, et al. Development of a Minimary Invasive Microneedle-Based Sensor for Continuouns Monitoring of ß-Lactam Antibiotic Concentration in Vivo. ACS Sens. 2019;4(4):1072–1080. doi: 10.1021/acsensors.9b00288

[64]

Gowers S.A.N,. Freeman D.M.E., Rawson T.M., et al. Development of a Minimary Invasive Microneedle-Based Sensor for Continuouns Monitoring of ß-Lactam Antibiotic Concentration in Vivo // ACS Sens. 2019. Vol. 4, N. 4. P. 1072–1080. doi: 10.1021/acsensors.9b00288

[65]

Berchmans S, Bandodkar A, Jia W, et al. An epidermal alkaline re Chargeable Ag-Zn printable tattoo battery for Wearable electronics. Journal of Materials Chemistry A. 2014;2:15788–15795. doi: 10.1039/C4TA03256J

[66]

Berchmans S., Bandodkar A., Jia W., et al. An epidermal alkaline re Chargeable Ag-Zn printable tattoo battery for Wearable electronics // Journal of Materials Chemistry A. 2014. Vol. 2. P. 15788–15795. doi: 10.1039/C4TA03256J

[67]

Sotnikov DV, Zherdev AV, Dzantiev BB. Detection of intermolecular interactions based on registration of surface plasmon resonance. Advances in biological chemistry. 2015;55:391–420. (In Russ.)

[68]

Сотников Д.В., Жердев А.В., Дзантиев Б.Б. Детекция межмолекулярных взаимодействий, основанная на регистрации поверхностного плазмонного резонанса // Успехи биологической химии. 2015. Т. 55. С. 391–420.

RIGHTS & PERMISSIONS

Eco-Vector

PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

/