Optical coherence tomography with angiography in the diagnosis of Alzheimer’s disease

Elena S. Strumentova , Vladimir Y. Lobzin , Dmitriy S. Mal'tsev , Maria A. Burnasheva , Maria M. Mosina , Almira A. Khasanova , Anna N. Doronina

Russian Military Medical Academy Reports ›› 2023, Vol. 42 ›› Issue (4) : 403 -411.

PDF (1116KB)
Russian Military Medical Academy Reports ›› 2023, Vol. 42 ›› Issue (4) :403 -411. DOI: 10.17816/rmmar492301
Original articles
research-article

Optical coherence tomography with angiography in the diagnosis of Alzheimer’s disease

Author information +
History +
PDF (1116KB)

Abstract

BACKGROUND: Alzheimer’s disease is becoming increasingly common and the number of patients with dementia is steadily increasing. Existing diagnostic methods (neuropsychological testing, cerebrospinal fluid examination, magnetic resonance imaging, and positron emission tomography) are either subjective, inaccessible or invasive and expensive, therefore the search for new methods of Alzheimer’s disease diagnosis is necessary. The retina and the human brain share a common embryonic origin. The use of optical coherence tomography with angiography can help in the diagnosis of the disease, especially at an early stage.

AIM: To perform a comparative analysis of the vascular density of the peripapillary region of the human retina with the severity of cognitive impairment and atrophic changes according to MRI in patients with Alzheimer’s disease.

MATERIALS AND METHODS: Thirty patients participated in the study: 20 with Alzheimer’s disease and 10 in the control group. All patients underwent collection of complaints and history, general neurological and ophthalmological examination to evaluate inclusion and noninclusion criteria. Subsequently, neuropsychological testing, magnetic resonance imaging of the brain with assessment according to standardized neuroimaging scales, and optical coherence tomography with angiography according to a standard protocol were performed. The results were processed using the Statistica 10 software package (StatSoft, USA).

RESULTS: Assessment of retinal microvascular bed condition in Alzheimer’s disease patients revealed a significant level of relative vascular density reduction in the upper half of radial peripapillary plexus of the retina due to reduction of small vessel density (p = 0.02). There was a direct correlation between the severity of the decrease in the FCSRT total score and changes in vascular density in the nasal sector of the retina (r = 0.52). There was a significant inverse relationship between vascular density in the temporal sector and the final GCA score for patients with Alzheimer’s disease (r = 0.57). The Fazekas scale score revealed an inverse correlation between its score and the vascular density in the upper retinal half and its upper sector (r = 0.53).

CONCLUSION: Оptical coherence tomography with angiography is a highly informative and promising method for early, including pre-diagnosis of Alzheimer’s disease, which is considerably more accessible and accurate than other techniques.

Keywords

Alzheimer’s disease / beta-amyloid / cognitive impairment / diagnostics / eye / optical coherence tomography with angiography / retina

Cite this article

Download citation ▾
Elena S. Strumentova, Vladimir Y. Lobzin, Dmitriy S. Mal'tsev, Maria A. Burnasheva, Maria M. Mosina, Almira A. Khasanova, Anna N. Doronina. Optical coherence tomography with angiography in the diagnosis of Alzheimer’s disease. Russian Military Medical Academy Reports, 2023, 42(4): 403-411 DOI:10.17816/rmmar492301

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Emelin AY, Lobzin VY. Complex differential diagnosis of cognitive impairment. The Korsakov’s Journal of Neurology and Psychiatry. 2017;117(6–2):33–40. DOI: 10.17116/jnevro20171176233-40

[2]

Емелин А.Ю. Лобзин В.Ю. Комплексная дифференциальная диагностика когнитивных нарушений // Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2017. T. 117, № 6–2. С. 33–40. DOI: 10.17116/jnevro20171176233-40

[3]

Holtzman DМ, Morris JC, Goate AM. Alzheimer’s disease: the challenge of the second century. Sci Transl Med. 2011;3(77):77sr1. DOI: 10.1126/scitranslmed.3002369

[4]

Holtzman D.М., Morris J.C., Goate A.M. Alzheimer’s disease: the challenge of the second century // Sci. Transl. Med. 2011. Vol. 3, No. 77. P. 77sr1. DOI: 10.1126/scitranslmed.3002369

[5]

Arvanitakis Z, Capuano AW, Leurgans SE, et al. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study. Lancet Neurol. 2016;15(9):934–943. DOI: 10.1016/S1474-4422(16)30029–1

[6]

Arvanitakis Z., Capuano A.W., Leurgans S.E., et al. Relation of cerebral vessel disease to Alzheimer’s disease dementia and cognitive function in elderly people: a cross-sectional study // Lancet Neurol. 2016. Vol. 15, No. 9. P. 934–943. DOI: 10.1016/S1474-4422(16)30029-1

[7]

Smith EE, Greenberg SM. Beta-amyloid, blood vessels, and brain function. Stroke. 2009;40(7):2601–2606. DOI: 10.1161/STROKEAHA.108.536839

[8]

Smith E.E., Greenberg S.M. Beta-amyloid, blood vessels, and brain function // Stroke. 2009. Vol. 40, No. 7. P. 2601–2606. DOI: 10.1161/STROKEAHA.108.536839

[9]

Jack CR Jr, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):119–128. DOI: 10.1016/S1474-4422(09)70299-6

[10]

Jack C.R. Jr., Knopman D.S., Jagust W.J., et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade // Lancet Neurol. 2010. Vol. 9, No. 1. P. 119–128. DOI: 10.1016/S1474-4422(09)70299-6

[11]

Emelin AYu. Diagnostic and treatment options for cognitive impirement in the non-demending stages. Neurology, Neuropsychiatry, Psychosomatics. 2020;12(5):78–83. (In Russ.) DOI: 10.14412/2074-2711-2020-5-78-83

[12]

Емелин А.Ю. Возможности диагностики и лечения когнитивных нарушений на недементных стадиях // Неврология, нейропсихиатрия, психосоматика. 2020. T. 12, № 5. P. 78–83. DOI: 10.14412/2074-2711-2020-5-78-83

[13]

McGrory S, Cameron JR, Pellegrini E, et al. The application of retinal fundus camera imaging in dementia: A systematic review. Alzheimers Dement (Amst). 2017;6:91–107. DOI: 10.1016/j.dadm.2016.11.001

[14]

McGrory S., Cameron J.R., Pellegrini E., et al. The application of retinal fundus camera imaging in dementia: A systematic review // Alzheimers Dement. (Amst). 2017. Vol. 6. No. 91–107. DOI: 10.1016/j.dadm.2016.11.001

[15]

Brown WR, Thore CR. Review: cerebral microvascular pathology in ageing and neurodegeneration. Neuropathol Appl Neurobiol. 2011;37(1):56–74. DOI: 10.1111/j.1365-2990.2010.01139.x

[16]

Brown W.R., Thore C.R. Review: cerebral microvascular pathology in ageing and neurodegeneration // Neuropathol. Appl. Neurobiol. 2011. Vol. 37, No. 1. P. 56–74. DOI: 10.1111/j.1365-2990.2010.01139.x

[17]

Yoon SP, Thompson AC, Polascik BW, et al. Correlation of OCTA and Volumetric MRI in Mild Cognitive Impairment and Alzheimer’s Disease. Ophthalmic Surg Lasers Imaging Retina. 2019;50(11):709–718. DOI: 10.3928/23258160-20191031-06

[18]

Yoon S.P., Thompson A.C., Polascik B.W., et al. Correlation of OCTA and Volumetric MRI in Mild Cognitive Impairment and Alzheimer’s Disease // Ophthalmic. Surg. Lasers Imaging Retina. 2019. Vol. 50, No. 11. P. 709–718. DOI: 10.3928/23258160-20191031-06

[19]

Den Haan J, Janssen SF, Van de Kreeke JA, et al. Retinal thickness correlates with parietal cortical atrophy in early-onset Alzheimer’s disease and controls. Alzheimers Dement (Amst). 2018;10:49–55. DOI: 10.1016/j.dadm.2017.10.005

[20]

Den Haan J., Janssen S.F., Van de Kreeke J.A., et al. Retinal thickness correlates with parietal cortical atrophy in early-onset Alzheimer’s disease and controls // Alzheimers Dement (Amst). 2018. Vol. 10. P. 49–55. DOI: 10.1016/j.dadm.2017.10.005

[21]

Ikram MK, De Jong FJ, Van Dijk EJ, et al. Retinal vessel diameters and cerebral small vessel disease: the Rotterdam Scan Study. Brain. 2006;129(Pt 1):182–188. DOI: 10.1093/brain/awh688

[22]

Ikram M.K., De Jong F.J., Van Dijk E.J., et al. Retinal vessel diameters and cerebral small vessel disease: the Rotterdam Scan Study // Brain. 2006. Vol. 129, Pt 1. P. 182–188. DOI: 10.1093/brain/awh688

[23]

Cheung CY, Ong YT, Ikram MK, et al. Microvascular network alterations in the retina of patients with Alzheimer’s disease. Alzheimers Dement. 2014;10(2):135–142. DOI: 10.1016/j.jalz.2013.06.009

[24]

Cheung C.Y., Ong Y.T., Ikram M.K., et al. Microvascular network alterations in the retina of patients with Alzheimer’s disease // Alzheimers Dement. 2014. Vol. 10, No. 2. P. 135–142. DOI: 10.1016/j.jalz.2013.06.009

[25]

Feke GT, Hyman BT, Stern RA, Pasquale LR. Retinal blood flow in mild cognitive impairment and Alzheimer’s disease. Alzheimers Dement (Amst). 2015;1(2):144–151. DOI: 10.1016/j.dadm.2015.01.004

[26]

Feke G.T., Hyman B.T., Stern R.A., Pasquale L.R. Retinal blood flow in mild cognitive impairment and Alzheimer’s disease // Alzheimers Dement (Amst). 2015. Vol. 1, No. 2. P. 144–151. DOI: 10.1016/j.dadm.2015.01.004

[27]

Tam J, Dhamdhere KP, Tiruveedhula P, et al. Subclinical capillary changes in non-proliferative diabetic retinopathy. Optom Vis Sci. 2012;89(5):E692–E703. DOI: 10.1097/OPX.0b013e3182548b07

[28]

Tam J., Dhamdhere K.P., Tiruveedhula P., et al. Subclinical capillary changes in non-proliferative diabetic retinopathy // Optom. Vis. Sci. 2012. Vol. 89, No. 5. P. E692–E703. DOI: 10.1097/OPX.0b013e3182548b07

[29]

Kutschbach P, Wolf S, Sieveking M, et al. Retinal capillary density in patients with arterial hypertension: 2-year follow-up. Graefes Arch Clin Exp Ophthalmol. 1998;236(6):410–414. DOI: 10.1007/s004170050098

[30]

Kutschbach P., Wolf S., Sieveking M., et al. Retinal capillary density in patients with arterial hypertension: 2-year follow-up // Graefes Arch. Clin. Exp. Ophthalmol. 1998. Vol. 236, No. 6. P. 410–414. DOI: 10.1007/s004170050098

[31]

Smith EE, Biessels GJ. Cerebral microinfarcts: enumerating the innumerable. Neurology. 2013;80(15):1358–1359. DOI: 10.1212/WNL.0b013e31828c2fec

[32]

Smith E.E., Biessels G.J. Cerebral microinfarcts: enumerating the innumerable // Neurology. 2013. Vol. 80, No. 15. P. 1358–1359. DOI: 10.1212/WNL.0b013e31828c2fec

[33]

Gulieva RN. Peripapillary retinal nerve fiber layer and ganglion cell complex in patients with Alzheimer’s disease. Clinical Ophthalmology. 2020;20(2):63–66. DOI: 10.32364/2311-7729-2020-20-2-63-66

[34]

Гулиева Р.Н. Перипапиллярный слой нервных волокон сетчатки и комплекс ганглиозных клеток у пациентов с болезнью Альцгеймера // Клиническая офтальмология. 2020. № 20 (2). С. 63–66. DOI: 10.32364/2311-7729-2020-20-2-63-66

[35]

Erchiev VP, Panyushkina LA, Fomin AV. Optical coherence tomography of the retina and optic nerve in the diagnosis of Alzheimer’s disease. Glaucoma. 2013;(1):5–10. DOI: 10.17116/jnevro201711791112-117

[36]

Еричев В.П., Панюшкина Л.А., Фомин А.В. Оптическая когерентная томография сетчатки и зрительного нерва в диагностике болезни Альцгеймера // Глаукома. 2013. № 1. С. 5–10. DOI: 10.17116/jnevro201711791112-117

[37]

Ascaso F.J., Cruz N., Modrego P.J., et al. Retinal alterations in mild cognitive impairment and Alzheimer’s disease: an optical coherence tomography study. J Neurol. 2014;261:1522–1530. DOI: 10.1007/s00415-014-7374-z

[38]

Ascaso F.J., Cruz N., Modrego P.J., et al. Retinal alterations in mild cognitive impairment and Alzheimer’s disease: an optical coherence tomography study // J. Neurol. 2014. Vol. 261. P. 1522–1530. DOI: 10.1007/s00415-014-7374-z

[39]

Tsokolas G, Tsaousis KT, Diakonis VF, et al. Optical coherence tomography angiography in neurodegenerative diseases: a review. Eye Brain. 2020;12:73–87. DOI: 10.2147/EB.S193026

[40]

Tsokolas G., Tsaousis K.T., Diakonis V.F., et al. Optical coherence tomography angiography in neurodegenerative diseases: a review // Eye Brain. 2020. Vol. 12. P. 73–87. DOI: 10.2147/EB.S193026

[41]

Alber J, Goldfarb D, Thompson LI, et al. Developing retinal biomarkers for the earliest stages of Alzheimer’s disease: What we know, what we don’t, and how to move forward. Alzheimers Dement. 2020;16(1):229–243. DOI: 10.1002/alz.12006

[42]

Alber J., Goldfarb D., Thompson L.I., et al. Developing retinal biomarkers for the earliest stages of Alzheimer’s disease: What we know, what we don’t, and how to move forward // Alzheimers Dement. 2020. Vol. 16, No. 1. P. 229–243. DOI: 10.1002/alz.12006

[43]

Rifai OM, McGrory S, Robbins CB, et al. The application of optical coherence tomography angiography in Alzheimer’s disease: A systematic review. Alzheimers Dement (Amst). 2021.13(1):e12149. DOI: 10.1002/dad2.12149

[44]

Rifai O.M., McGrory S., Robbins C.B., et al. The application of optical coherence tomography angiography in Alzheimer’s disease: A systematic review // Alzheimers Dement (Amst). 2021. Vol. 13, No. 1. P. e12149. DOI: 10.1002/dad2.12149

[45]

Deal JA, Sharrett AR, Rawlings AM, et al. Retinal signs and 20-year cognitive decline in the atherosclerosis risk in communities study. Neurology. 2018;90(13):e1158–e1166. DOI: 10.1212/WNL.0000000000005205

[46]

Deal J.A., Sharrett A.R., Rawlings A.M., et al. Retinal signs and 20-year cognitive decline in the atherosclerosis risk in communities study // Neurology. 2018. Vol. 90, No. 13. P. e1158–e1166. DOI: 10.1212/WNL.0000000000005205

[47]

Deal JA, Sharrett AR, Albert M, et al. Retinal signs and risk of incident dementia in the atherosclerosis risk in communities study. Alzheimers Dement. 2019;15(3):477–486. DOI: 10.1016/j.jalz.2018.10.002

[48]

Deal J.A., Sharrett A.R., Albert M., et al. Retinal signs and risk of incident dementia in the atherosclerosis risk in communities study // Alzheimers Dement. 2019. Vol. 15, No. 3. P. 477–486. DOI: 10.1016/j.jalz.2018.10.002

[49]

Moussa M, Falfoul Y, Nasri A, et al. Optical coherence tomography and angiography in Alzheimer’s disease and other cognitive disorders. Eur J Ophthalmol. 2023;33(4):1706–1717. DOI: 10.1177/11206721221148952

[50]

Moussa M., Falfoul Y., Nasri A., et al. Optical coherence tomography and angiography in Alzheimer’s disease and other cognitive disorders // Eur. J. Ophthalmol. 2023. Vol. 33, No. 4. P. 1706–1717. DOI: 10.1177/11206721221148952

RIGHTS & PERMISSIONS

Eco-Vector

PDF (1116KB)

107

Accesses

0

Citation

Detail

Sections
Recommended

/