Focus on the anti-inflammatory effect of glucocorticosteroids in experimental acute lung injury
Nikita I. Voloshin , Yuliya A. Zamiralova , Victoriya A. Pugach , Vladimir V. Salukhov , Mikhail A. Tyunin , Mikhail A. Kharitonov , Irina A. Odintsova , Pavel A. Slizhov , Aleksey A. Minakov , Dina R. Slutskaya
Russian Military Medical Academy Reports ›› 2023, Vol. 42 ›› Issue (2) : 167 -176.
Focus on the anti-inflammatory effect of glucocorticosteroids in experimental acute lung injury
AIM: Assessment of the effect of various doses of dexamethasone as an inflammation modulator in experimental lipopolysaccharide-induced acute lung injury in rats.
MATERIALS AND METHODS: Acute lung injury in rats was modeled by intratracheal administration of cell wall lipopolysaccharide from the Salmonella enterica. White male rats were divided into groups: a group of intact animals (n = 10); the control group (n = 40), in which the animals were simulated acute lung injury without further treatment and removed from the experiment on day 3; three experimental groups (n = 40), in which, 3 hours after modeling acute lung injury, and then daily once a day for 3 days, dexamethasone solution was administered intraperitoneally in the following doses: in group 1 — 0.52 mg/kg (equivalent to 6.0 mg/day for a person), in group 2 — 1.71 mg/kg (20.0 mg/day for a person), in group 3 — 8.0 mg/kg (94.0 mg/day, pulse therapy for humans). On the 3rd day, blood samples were taken from the caudal vena cava in surviving animals for clinical analysis and evaluation of the function of mitochondria of peripheral blood leukocytes. To determine the severity of local inflammatory reactions and pulmonary edema, bronchoalveolar lavage was performed with the study of an endopulmonary cytogram and an assessment of pathomorphological changes in the lung tissue.
RESULTS: indicate that dexamethasone reduces the amount of lung tissue damage and animal mortality, dose-dependently reduces the functions of mitochondria and the number of lymphocytes and monocytes in peripheral blood, as well as neutrophils, lymphocytes and macrophages in bronchoalveolar lavage samples.
CONCLUSION: The use of dexamethasone at a dose of 0.52 mg/kg (equivalent to 6.0 mg/day for humans) is accompanied by better survival, minimal effect on the viability and functional activity of inflammatory cells. Pulse therapy leads to a significant decrease in the number of immunocompetent cells in bronchoalveolar lavage, mitochondrial dysfunction in the form of a decrease in the ability of these cells to use the reserve power of mitochondrial respiration in response to the action of a stress factor. Excessive inhibition of immunocompetent cells can contribute to the activation of latent and opportunistic infections, which must be taken into account when choosing a dosing regimen for glucocorticosteroids.
Agilent seahorse XF / acute lung injury / biomodeling / bronchoalveolar lavage / dose-dependent effect / glucocorticosteroids / mitochondrial dysfunction
| [1] |
Edalatifard M, Akhtari M, Salehi M, et. al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial. Eur Respir J. 2020;56(6):2002808. DOI: 10.1183/13993003.02808-2020 |
| [2] |
Edalatifard M., Akhtari M., Salehi M., et. al. Intravenous methylprednisolone pulse as a treatment for hospitalised severe COVID-19 patients: results from a randomised controlled clinical trial // Eur. Respir. J. 2020. Vol. 56, No. 6. P. 2002808. DOI: 10.1183/13993003.02808-2020 |
| [3] |
Stolz E, Klötzsch C, Schlachetzki F, et. al. High-dose corticosteroid treatment is associated with an increased risk of developing cerebral venous thrombosis. Eur Neurol. 2003;49(4):24–78. DOI: 10.1159/000070197 |
| [4] |
Stolz E., Klötzsch C., Schlachetzki F., et. al. High-dose corticosteroid treatment is associated with an increased risk of developing cerebral venous thrombosis // Eur. Neurol. 2003. Vol. 49, No. 4. P. 24–78. DOI: 10.1159/000070197 |
| [5] |
Munch MW, Myatra SN, Vijayaraghavan B, et. al. Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults With COVID-19 and Severe Hypoxemia: The COVID STEROID2 Randomized Trial. JAMA. 2021;326(18):1807–1817. DOI: 10.1001/jama.2021.18295 |
| [6] |
Munch M.W., Myatra S.N., Vijayaraghavan B., et. al. Effect of 12 mg vs 6 mg of Dexamethasone on the Number of Days Alive Without Life Support in Adults With COVID-19 and Severe Hypoxemia: The COVID STEROID2 Randomized Trial // JAMA. 2021. Vol. 326, No. 18. P. 1807–1817. DOI: 10.1001/jama.2021.18295 |
| [7] |
Yaroshetskiy AI, Gritsan AI, Avdeev SN, et. al. Diagnostics and intensive therapy of Acute Respiratory Distress Syndrome Russian. (Clinical guidelines of the Federation of Anesthesiologists and Reanimatologists of Russia). Russian Journal of Anаеsthesiology and Reanimatology. 2020;(2):5–39. (In Russ.) DOI: 10.17116/anaesthesiology20200215 |
| [8] |
Ярошецкий А.И., Грицан А.И., Авдеев С.Н., и др. Диагностика и интенсивная терапия острого респираторного дистресс-синдрома. (Клинические рекомендации Общероссийской общественной организации «Федерация анестезиологов и реаниматологов») // Анестезиология и реаниматология. 2020. № 2. C. 5–39. DOI: 10.17116/anaesthesiology20200215 |
| [9] |
Fan E, Del Sorbo L, Goligher EC, et. al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med. 2017;195(9):1253–1263. DOI: 10.1164/rccm.201703-0548ST |
| [10] |
Fan E., Del Sorbo L., Goligher E.C., et. al. An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome // Am. J. Respir. Crit. Care Med. 2017. Vol. 195, No. 9. P. 1253–1263. DOI: 10.1164/rccm.201703-0548ST |
| [11] |
Matute-Bello G, Downey G, Moore BB, et. al. Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725–738. DOI: 10.1165/rcmb.2009-0210ST |
| [12] |
Matute-Bello G., Downey G., Moore B.B., et. al. Acute Lung Injury in Animals Study Group. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals// Am. J. Respir. Cell Mol. Biol. 2011. Vol. 44, No. 5. P. 725–738. DOI: 10.1165/rcmb.2009-0210ST |
| [13] |
Lin S, Wu H, Wang C, et. al. Regulatory T Cells and Acute Lung Injury: Cytokines, Uncontrolled Inflammation, and Therapeutic Implications. Front Immunol. 2018;9:1545. DOI: 10.3389/fimmu.2018.01545 |
| [14] |
Lin S., Wu H., Wang C., et. al. Regulatory T Cells and Acute Lung Injury: Cytokines, Uncontrolled Inflammation, and Therapeutic Implications // Front. Immunol. 2018. Vol. 9. Art. 1545. DOI: 10.3389/fimmu.2018.01545 |
| [15] |
Salukhov VV, Kharitonov MA, Kryukov EV, et. al. Topical issues of diagnostics, examination and treatment of patients with COVID-19-associated pneumonia in different countries and continents. Meditsinskiy sovet 2020;(21):96–102. (In Russ.) DOI: 10.21518/2079-701X-2020-21-96-102 |
| [16] |
Салухов В.В., Харитонов М.А., Крюков Е.В., и др. Актуальные вопросы диагностики, обследования и лечения больных с COVID-19-ассоциированной пневмонией в различных странах и континентах // Медицинский Совет. 2020. № 21. С. 96–102. |
| [17] |
Salukhov VV, Voloshin NI, Shperling MI. Effectiveness of various regimens of systemic anti-inflammatory therapy with glucocorticoids in the development of acute LPS-induced lung damage in the experiment. Russian Military Medical Academy Reports. 2022;41(2):111–116. (In Russ.) DOI: 10.17816/rmmar104619 |
| [18] |
Салухов В.В., Волошин Н.И., Шперлинг М.И. Эффективность применения различных схем системной противовоспалительной терапии глюкокортикоидами при развитии острого ЛПС-индуцированного повреждения легких в эксперименте // Известия Российской Военно-медицинской академии. 2022. Т. 41, № 2. С. 111–116. DOI: 10.17816/rmmar104619 |
| [19] |
Griffiths M, McAuley D, Perkins G, et. al. Guidelines on the management of acute respiratory distress syndrome. BMJ Open Respir Res. 2019;6(1):e000420. DOI: 10.1136/bmjresp-2019-000420 |
| [20] |
Griffiths M., McAuley D., Perkins G., et. al. Guidelines on the management of acute respiratory distress syndrome // BMJ Open Respir. Res. 2019. Vol. 6, No. 1. Art. e000420. DOI: 10.1136/bmjresp-2019-000420 |
| [21] |
Shekunova EV, Kovaleva MA, Makarova MN, et. al. The choice of dose of the drug for preclinical studies: interspecies transfer of doses. Vedomosti Nauchnogo tsentra ekspertizy sredstv meditsinskogo primeneniya. 2020;10(1):19–28 (In Russ.) DOI:10.30895/1991-2919-2020-10-1-19-28 |
| [22] |
Шекунова Е.В., Ковалева М.А., Макарова М.Н., и др. Выбор дозы препарата для доклинического исследования: межвидовой перенос доз // Ведомости Научного центра экспертизы средств медицинского применения. 2020. Т. 10, № 1. C. 19–28. |
| [23] |
Ince LM, Weber J, Scheiermann C. Control of Leukocyte Trafficking by Stress-Associated Hormones. Front Immunol. 2019;9:3143. DOI: 10.3389/fimmu.2018.03143 |
| [24] |
Ince L.M., Weber J., Scheiermann C. Control of Leukocyte Trafficking by Stress-Associated Hormones // Front. Immunol. 2019. Vol. 9. Art. 3143. DOI: 10.3389/fimmu.2018.03143 |
| [25] |
Qin M, Qiu Z. Changes in TNF-α, IL-6, IL-10 and VEGF in rats with ARDS and the effects of dexamethasone. Exp Ther Med. 2019;17(1):383–387. DOI: 10.3892/etm.2018.6926 |
| [26] |
Qin M., Qiu Z. Changes in TNF-α, IL-6, IL-10 and VEGF in rats with ARDS and the effects of dexamethasone // Exp. Ther. Med. 2019. Vol. 17, No. 1. P. 383–387. DOI: 10.3892/etm.2018.6926 |
Eco-Vector
/
| 〈 |
|
〉 |