Effects of human lactoferrin under conditions of neurotoxic exposure: experimental research
Marina Yu. Kopaeva , Anton B. Cherepov , Irina Yu. Zarayskaya
Russian Military Medical Academy Reports ›› 2022, Vol. 41 ›› Issue (4) : 385 -392.
Effects of human lactoferrin under conditions of neurotoxic exposure: experimental research
BACKGROUND: Translational research using laboratory animals aimed at revealing the features of the pathogenesis of Parkinson’s disease serve as a tool for finding new therapeutic strategies.
AIM: Was to investigate the effects of human lactoferrin (a multifunctional globular glycoprotein) on behavior the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice as the model of dopaminergic neurons loss.
MATERIALS AND METHODS: Nigrostriatal dopaminergic injury was induced by single administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (40 mg/kg) to five-month-old C57Bl/6 mice. Behavioral functions were assessed in the open field and rotarod tests and by the stride length analysis.
RESULTS: Preliminary administration of lactoferrin resulted in a significant reduction in the severity of nervous system lesions induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. The positive effect of lactoferrin on the exploratory behavior of animals disturbed by neurotoxin, depending on the time of administration, was revealed. Exogenous protein with double preliminary administration had a protective effect on the change in body weight of mice after acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. This suggests a reduction in systemic toxic effects against the background of lactoferrin therapy.
CONCLUSION: The results obtained indicate the possibility of the potential use of lactoferrin as a promising therapeutic agent in the treatment of neurodegenerative diseases.
Parkinson’s disease / dopaminergic neurons / exploratory activity / neurodegeneration / neurotoxin MPTP / rotarod / open field test / human lactoferrin
| [1] |
Litvinenko IV, Trufanov AG, Yurin AA. Parkinson’s disease and parkinsonism syndromes. Kazan; 2018. 54 p. |
| [2] |
Литвиненко И.В., Труфанов А.Г., Юрин А.А., и др. Болезнь Паркинсона и синдромы паркинсонизма. Казань, 2018. 54 с. |
| [3] |
Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39(6):889–909. DOI: 10.1016/s0896-6273(03)00568-3 |
| [4] |
Dauer W., Przedborski S. Parkinson’s disease: mechanisms and models // Neuron. 2003. Vol. 39, No. 6. P. 889–909. DOI: 10.1016/s0896-6273(03)00568-3 |
| [5] |
Sedelis M, Schwarting RK, Huston JP. Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res. 2001;125(1–2):109–125. DOI: 10.1016/s0166-4328(01)00309-6 |
| [6] |
Sedelis M., Schwarting R.K., Huston J.P. Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease // Behav. Brain Res. 2001. Vol. 125, No. 1–2. P. 109–125. DOI: 10.1016/s0166-4328(01)00309-6 |
| [7] |
Cao Q, Qin L, Huang F, et al. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicol Appl Pharmacol. 2017;319:80–90. DOI: 10.1016/j.taap.2017.01.019 |
| [8] |
Cao Q., Qin L., Huang F., et al. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways // Toxicol. Appl. Pharmacol. 2017. Vol. 319. P. 80–90. DOI: 10.1016/j.taap.2017.01.019 |
| [9] |
Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc. 2007;2(1):141–151. DOI: 10.1038/nprot.2006.342 |
| [10] |
Jackson-Lewis V., Przedborski S. Protocol for the MPTP mouse model of Parkinson’s disease // Nat. Protoc. 2007. Vol. 2, No. 1. P. 141–151. DOI: 10.1038/nprot.2006.342 |
| [11] |
Gubellini P, Kachidian P. Animal models of Parkinson’s disease: An updated overview. Rev Neurol (Paris). 2015;171(11):750–761. DOI: 10.1016/j.neurol.2015.07.011 |
| [12] |
Gubellini P., Kachidian P. Animal models of Parkinson’s disease: An updated overview // Rev. Neurol. (Paris). 2015. Vol. 171, No. 11. P. 750–761. DOI: 10.1016/j.neurol.2015.07.011 |
| [13] |
García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta. 2012;1820(3):226–236. DOI: 10.1016/j.bbagen.2011.06.018 |
| [14] |
García-Montoya I.A., Cendón T.S., Arévalo-Gallegos S., Rascón-Cruz Q. Lactoferrin a multiple bioactive protein: an overview // Biochim. Biophys. Acta. 2012. Vol. 1820, No. 3. P. 226–236. DOI: 10.1016/j.bbagen.2011.06.018 |
| [15] |
Chen Y., Zheng Z., Zhu X., et al. Lactoferrin Promotes Early Neurodevelopment and Cognition in Postnatal Piglets by Upregulating the BDNF Signaling Pathway and Polysialylation. Mol Neurobiol. 2015;52(1):256–269. DOI: 10.1007/s12035-014-8856-9 |
| [16] |
Chen Y., Zheng Z., Zhu X., et al. Lactoferrin Promotes Early Neurodevelopment and Cognition in Postnatal Piglets by Upregulating the BDNF Signaling Pathway and Polysialylation // Mol. Neurobiol. 2015. Vol. 52, No. 1. P. 256–269. DOI: 10.1007/s12035-014-8856-9 |
| [17] |
Kopaeva MY, Alchinova IB, Nesterenko MV, et al. Lactoferrin beneficially influences the recovery of physiological and behavioral indexes in mice exposed to acute gamma-irradiation. Patogenez [Pathogenesis]. 2020;18(1):29–33. (In Russ.) DOI: 10.25557/2310-0435.2020.01.29-33 |
| [18] |
Копаева М.Ю., Алчинова И.Б., Нестеренко М.В., и др. Лактоферрин положительно влияет на динамику восстановления физиологических и поведенческих показателей мышей при остром гамма-облучении // Патогенез. 2020. T. 18, № 1. C. 29–33. DOI: 10.25557/2310-0435.2020.01.29-33 |
| [19] |
Kopaeva MY, Alchinova IB, Cherepov AB, et al. New Properties of a Well-Known Antioxidant: Pleiotropic Effects of Human Lactoferrin in Mice Exposed to Gamma Irradiation in a Sublethal Dose. Antioxidants (Basel). 2022; 11(9):1833. DOI: 10.3390/antiox11091833 |
| [20] |
Kopaeva M.Y., Alchinova I.B., Cherepov A.B., et al. New Properties of a Well-Known Antioxidant: Pleiotropic Effects of Human Lactoferrin in Mice Exposed to Gamma Irradiation in a Sublethal Dose // Antioxidants (Basel). 2022. Vol. 11, No. 9. P. 1833. DOI: 10.3390/antiox11091833 |
| [21] |
Kopaeva MY, Cherepov AB, Nesterenko MV, Zarayskaya IY. Pretreatment with Human Lactoferrin Had a Positive Effect on the Dynamics of Mouse Nigrostriatal System Recovery after Acute MPTP Exposure. Biology (Basel). 2021;10(1):24. DOI: 10.3390/biology10010024 |
| [22] |
Kopaeva M.Y., Cherepov A.B., Nesterenko M.V., Zarayskaya I.Y. Pretreatment with Human Lactoferrin Had a Positive Effect on the Dynamics of Mouse Nigrostriatal System Recovery after Acute MPTP Exposure // Biology (Basel). 2021. Vol. 10, No. 1. P. 24. DOI: 10.3390/biology10010024 |
| [23] |
Faucheux BA, Nillesse N, Damier P, et al. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc Natl Acad Sci USA. 1995;92(21):9603–9607. DOI: 10.1073/pnas.92.21.9603 |
| [24] |
Faucheux B.A., Nillesse N., Damier P., et al. Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease // Proc. Natl. Acad. Sci. USA. 1995. Vol. 92, No. 21. P. 9603–9607. DOI: 10.1073/pnas.92.21.9603 |
| [25] |
Fillebeen C, Descamps L, Dehouck MP, et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. J Biol Chem. 1999;274(11):7011–7017. DOI: 10.1074/jbc.274.11.7011 |
| [26] |
Fillebeen C., Descamps L., Dehouck M.P., et al. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier // J. Biol. Chem. 1999. Vol. 274, No. 11. P. 7011–7017. DOI: 10.1074/jbc.274.11.7011 |
| [27] |
Suzuki YA, Lopez V, Lönnerdal B. Mammalian lactoferrin receptors: structure and function. Cell Mol Life Sci. 2005;62(22):2560–2575. DOI: 10.1007/s00018-005-5371-1 |
| [28] |
Suzuki Y.A., Lopez V., Lönnerdal B. Mammalian lactoferrin receptors: structure and function // Cell Mol. Life Sci. 2005. Vol. 62, No. 22. P. 2560–2575. DOI: 10.1007/s00018-005-5371-1 |
| [29] |
Rosa AI, Duarte-Silva S, Silva-Fernandes A, et al. Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson’s Disease. Mol Neurobiol. 2018;55(12):9139–9155. DOI: 10.1007/s12035-018-1062-4 |
| [30] |
Rosa A.I., Duarte-Silva S., Silva-Fernandes A., et al. Tauroursodeoxycholic Acid Improves Motor Symptoms in a Mouse Model of Parkinson’s Disease // Mol. Neurobiol. 2018. Vol. 55, No. 12. P. 9139–9155. DOI: 10.1007/s12035-018-1062-4 |
| [31] |
Mandillo S, Tucci V, Hölter SM, et al. Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiol Genomics. 2008;34(3):243–255. DOI: 10.1152/physiolgenomics.90207.2008 |
| [32] |
Mandillo S., Tucci V., Hölter S.M., et al. Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study // Physiol. Genomics. 2008. Vol. 34, No. 3. P. 243–255. DOI: 10.1152/physiolgenomics.90207.2008 |
| [33] |
Carola V, D’Olimpio F, Brunamonti E, Mangia F, Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res. 2002;134(1–2):49–57. DOI: 10.1016/s0166-4328(01)00452-1 |
| [34] |
Carola V., D’Olimpio F., Brunamonti E., Mangia F., Renzi P. Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice // Behav. Brain Res. 2002. Vol. 134, No. 1–2. P. 49–57. DOI: 10.1016/s0166-4328(01)00452-1 |
| [35] |
Ferger B, Teismann P, Earl CD, Kuschinsky K, Oertel WH. The protective effects of PBN against MPTP toxicity are independent of hydroxyl radical trapping. Pharmacol Biochem Behav. 2000;65(3): 425–431. DOI: 10.1016/s0091-3057(99)00229-4 |
| [36] |
Ferger B., Teismann P., Earl C.D., Kuschinsky K., Oertel W.H. The protective effects of PBN against MPTP toxicity are independent of hydroxyl radical trapping // Pharmacol. Biochem. Behav. 2000. Vol. 65, No. 3. P. 425–431. DOI: 10.1016/s0091-3057(99)00229-4 |
| [37] |
Xu SF, Zhang YH, Wang S, et al. Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice. Redox Biol. 2019;21:101090. DOI: 10.1016/j.redox.2018.101090 |
| [38] |
Xu S.F., Zhang Y.H., Wang S., et al. Lactoferrin ameliorates dopaminergic neurodegeneration and motor deficits in MPTP-treated mice // Redox. Biol. 2019. Vol. 21. P. 101090. DOI: 10.1016/j.redox.2018.101090 |
| [39] |
Liu H, Wu H, Zhu N, et al. Lactoferrin protects against iron dysregulation, oxidative stress, and apoptosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease in mice. J Neurochem. 2020;152(3):397–415. DOI: 10.1111/jnc.14857 |
| [40] |
Liu H., Wu H., Zhu N., et al. Lactoferrin protects against iron dysregulation, oxidative stress, and apoptosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease in mice // J. Neurochem. 2020. Vol. 152, No. 3. P. 397–415. DOI: 10.1111/jnc.14857 |
| [41] |
Rousseau E, Michel PP, Hirsch EC. The iron-binding protein lactoferrin protects vulnerable dopamine neurons from degeneration by preserving mitochondrial calcium homeostasis. Mol Pharmacol. 2013;84(6):888–898. DOI: 10.1124/mol.113.087965 |
| [42] |
Rousseau E., Michel P.P., Hirsch E.C. The iron-binding protein lactoferrin protects vulnerable dopamine neurons from degeneration by preserving mitochondrial calcium homeostasis // Mol. Pharmacol. 2013. Vol. 84, No. 6. P. 888–898. DOI: 10.1124/mol.113.087965 |
| [43] |
Kopaeva MY, Azieva AM, Cherepov AB, et al. Human lactoferrin enhances the expression of transcription factor c-Fos in neuronal cultures under stimulated conditions. Patogenez [Pathogenesis]. 2021;19(1):74–78. (In Russ.) DOI: 10.25557/2310-0435.2021.01.74-78 |
| [44] |
Копаева М.Ю., Азиева А.М., Черепов А.Б., и др. Лактоферрин человека усиливает экспрессию транскрипционного фактора c-Fos в нейрональных культурах в условиях стимуляции // Патогенез. 2021. T. 19, № 1. C. 74–78. DOI: 10.25557/2310-0435.2021.01.74-78 |
Eco-Vector
/
| 〈 |
|
〉 |