Immune-mediated and autoimmune disorders of central nervous system after new coronavirus disease
Alexandra О. Kozlova , Alfiia Kh. Zabirova , Ekaterina V. Baydina , Maria N. Zakharova
Russian Military Medical Academy Reports ›› 2022, Vol. 41 ›› Issue (4) : 445 -453.
Immune-mediated and autoimmune disorders of central nervous system after new coronavirus disease
Autoimmune and immune-mediated diseases of the central nervous system are relatively rare, but potentially severe and disabling complications of the novel coronavirus infection (COVID-19). Despite the lack of exact prevalence of this group among other complications of COVID-19, its study lately receives increasing attention. Big variety of mechanisms could be involved into pathogenesis of autoimmune and immune-mediated disorders of the central nervous system, including the aberrant immune response to direct viral invasion, neuroinflammation and activation of T- and B-lymphocytes, formation of autoantibodies as a result of cross-reactivity or due to molecular mimicry, etc. This review discusses recent data on the pathogenetic mechanisms as well as clinical features of the most common complications of COVID-19: myelitis, MOG-associated diseases, spectrum of neuromyelitis optica disorders. Multiple potential biomarkers detected in post-COVID-19 patients and their diagnostic and clinical value are discussed. Given the increased number of patients having COVID-19, the study of such diseases, their connection with infection, and possible mechanisms seems to be an extremely relevant area of modern neuroimmunology.
autoimmune diseases / coronavirus disease / COVID-19 / myeline oligodendrocyte glycoprotein / myelitis / neuromyelitis optica spectrum disorders / SARS-CoV-2
| [1] |
Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819–824. DOI: 10.1001/jamacardio.2020.1096 |
| [2] |
Inciardi R.M., Lupi L., Zaccone G., et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19) // JAMA Cardiol. 2020. Vol. 5, No. 7. P. 819–824. DOI: 10.1001/jamacardio.2020.1096 |
| [3] |
Zoghi G, Moosavy SH, Yavarian S, et al. Gastrointestinal implications in COVID-19. BMC Infect Dis. 2021;21(1):1135. DOI: 10.1186/s12879-021-06824-y |
| [4] |
Zoghi G., Moosavy S.H., Yavarian S., et al. Gastrointestinal implications in COVID-19 // BMC Infect. Dis. 2021. Vol. 21, No. 1. P. 1135. DOI: 10.1186/s12879-021-06824-y |
| [5] |
Gómez-Mesa JE, Galindo-Coral S, Montes MC, Muñoz Martin AJ. Thrombosis and Coagulopathy in COVID-19. Curr Probl Cardiol. 2021;46(3):100742. DOI: 10.1016/j.cpcardiol.2020.100742 |
| [6] |
Gómez-Mesa J.E., Galindo-Coral S., Montes M.C., Muñoz Martin A.J. Thrombosis and Coagulopathy in COVID-19 // Curr. Probl. Cardiol. 2021. Vol. 46, No. 3. P. 100742. DOI: 10.1016/j.cpcardiol.2020.100742 |
| [7] |
Sachdeva M, Gianotti R, Shah M, et al. Cutaneous manifestations of COVID-19: Report of three cases and a review of literature. J Dermatol Sci. 2020;98(2):75–81. DOI: 10.1016/j.jdermsci.2020.04.011 |
| [8] |
Sachdeva M. Gianotti R., Shah M., et al. Cutaneous manifestations of COVID-19: Report of three cases and a review of literature // J. Dermatol. Sci. 2020. Vol. 98, No. 2. P. 75–81. DOI: 10.1016/j.jdermsci.2020.04.011 |
| [9] |
Seah I, Agrawal R. Can the Coronavirus Disease 2019 (COVID-19) Affect the Eyes? A Review of Coronaviruses and Ocular Implications in Humans and Animals. Ocul Immunol Inflamm. 2020;28(3): 391–395. DOI: 10.1080/09273948.2020.1738501 |
| [10] |
Seah I., Agrawal R. Can the Coronavirus Disease 2019 (COVID-19) Affect the Eyes? A Review of Coronaviruses and Ocular Implications in Humans and Animals // Ocul. Immunol. Inflamm. 2020. Vol. 28, No. 3. P. 391–395. DOI: 10.1080/09273948.2020.1738501 |
| [11] |
Espíndola OM, Gomes YCP, Brandão CO, et al. Inflammatory Cytokine Patterns Associated with Neurological Diseases in Coronavirus Disease 2019. Ann Neurol. 2021;89(5):1041–1045. DOI: 10.1002/ana.26041 |
| [12] |
Espíndola O.M., Gomes Y.C.P., Brandão C.O., et al. Inflammatory Cytokine Patterns Associated with Neurological Diseases in Coronavirus Disease 2019 // Ann. Neurol. 2021. Vol. 89, No. 5. P. 1041–1045. DOI: 10.1002/ana.26041 |
| [13] |
Bernard-Valnet R, Perriot S, Canales M, et al. Encephalopathies Associated With Severe COVID-19 Present Neurovascular Unit Alterations Without Evidence for Strong Neuroinflammation. Neurol Neuroimmunol Neuroinflamm. 2021;8(5): e1029. DOI: 10.1212/nxi.0000000000001029 |
| [14] |
Bernard-Valnet R., Perriot S., Canales M., et al. Encephalopathies Associated With Severe COVID-19 Present Neurovascular Unit Alterations Without Evidence for Strong Neuroinflammation // Neurol. Neuroimmunol. Neuroinflamm. 2021. Vol. 8, No. 5. Art. e1029. DOI: 10.1212/nxi.0000000000001029 |
| [15] |
Moody R, Wilson K, Flanagan KL, et al. Adaptive Immunity and the Risk of Autoreactivity in COVID-19. Int J Mol Sci. 2021;22(16):8965. DOI: 10.3390/ijms22168965 |
| [16] |
Moody R., Wilson K., Flanagan K.L., et al. Adaptive Immunity and the Risk of Autoreactivity in COVID-19 // Int. J. Mol. Sci. 2021. Vol. 22, No. 16. Art. 8965. DOI: 10.3390/ijms22168965 |
| [17] |
Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. DOI: 10.1056/nejmoa2002032 |
| [18] |
Guan W.J., Ni Z.Y., Hu Y., et al. Clinical Characteristics of Coronavirus Disease 2019 in China // N. Engl. J. Med. 2020. Vol. 382, No. 18. P. 1708–1720. DOI: 10.1056/nejmoa2002032 |
| [19] |
Chou SH, Beghi E, Helbok R, et al. Global Incidence of Neurological Manifestations Among Patients Hospitalized With COVID-19-A Report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium. JAMA Netw Open. 2021;4(5):e2112131. DOI: 10.1001/jamanetworkopen.2021.12131 |
| [20] |
Chou S.H., Beghi E., Helbok R., et al. Global Incidence of Neurological Manifestations Among Patients Hospitalized With COVID-19-A Report for the GCS-NeuroCOVID Consortium and the ENERGY Consortium // JAMA Netw. Open. 2021. Vol. 4, No. 5. Art. e2112131. DOI: 10.1001/jamanetworkopen.2021.12131 |
| [21] |
Ariño H, Heartshorne R, Michael BD, et al. Neuroimmune disorders in COVID-19. J Neurol. 2022;269(6):2827–2839. DOI: 10.1007/s00415–022–11050-w |
| [22] |
Ariño H., Heartshorne R., Michael B.D., et al. Neuroimmune disorders in COVID-19 // J. Neurol. 2022. Vol. 269, No. 6. P. 2827–2839. DOI: 10.1007/s00415-022-11050-w |
| [23] |
Liu JM, Tan BH, Wu S, et al. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J Med Virol. 2021;93(3):1304–1313. DOI: 10.1002/jmv.26570 |
| [24] |
Liu J.M., Tan B.H., Wu S., et al. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection // J. Med. Virol. 2021. Vol. 93, No. 3. P. 1304–1313. DOI: 10.1002/jmv.26570 |
| [25] |
Arbour N, Ekandé S, Côté G, et al. Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E. J Virol. 1999;73(4):3326–3337. DOI: 10.1128/jvi.73.4.3326–3337.1999 |
| [26] |
Arbour N., Ekandé S., Côté G., et al. Persistent infection of human oligodendrocytic and neuroglial cell lines by human coronavirus 229E // J. Virol. 1999. Vol. 73, No. 4. P. 3326–3337. DOI: 10.1128/jvi.73.4.3326-3337.1999 |
| [27] |
Sarwar S, Rogers S, Mohamed AS, et al. Multiple Sclerosis Following SARS-CoV-2 Infection: A Case Report and Literature Review. Cureus. 2021;13(10): e19036. DOI: 10.7759/cureus.19036 |
| [28] |
Sarwar S., Rogers S., Mohamed A.S., et al. Multiple Sclerosis Following SARS-CoV-2 Infection: A Case Report and Literature Review // Cureus. 2021. Vol. 13, No. 10. Art. e19036. DOI: 10.7759/cureus.19036 |
| [29] |
Fleischer M, Köhrmann M, Dolff S, et al. Observational cohort study of neurological involvement among patients with SARS-CoV-2 infection. Ther Adv Neurol Disord. 2021;14:1756286421993701. DOI: 10.1177/175628642199370 |
| [30] |
Fleischer M., Köhrmann M., Dolff S., et al. Observational cohort study of neurological involvement among patients with SARS-CoV-2 infection // Ther. Adv. Neurol. Disord. 2021. Vol. 14. Art. 1756286421993701. DOI: 10.1177/175628642199370 |
| [31] |
Jarius S, Pache F, Körtvelyessy P, et al. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients. J Neuroinflammation. 2022;19(1):19. DOI: 10.1186/s12974-021-02339-0 |
| [32] |
Jarius S., Pache F., Körtvelyessy P., et al. Cerebrospinal fluid findings in COVID-19: a multicenter study of 150 lumbar punctures in 127 patients // J. Neuroinflammation. 2022. Vol. 19, No. 1. P. 19. DOI: 10.1186/s12974-021-02339-0 |
| [33] |
Remsik J, Wilcox JA, Babady NE, et al. Inflammatory Leptomeningeal Cytokines Mediate COVID-19 Neurologic Symptoms in Cancer Patients. Cancer Cell. 2021;39(2):276–283.e3. DOI: 10.1016/j.ccell.2021.01.007 |
| [34] |
Remsik J., Wilcox J.A., Babady N.E., et al. Inflammatory Leptomeningeal Cytokines Mediate COVID-19 Neurologic Symptoms in Cancer Patients // Cancer Cell. 2021. Vol. 39, No. 2. Art. 276–283.e3. DOI: 10.1016/j.ccell.2021.01.007 |
| [35] |
Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259–264. DOI: 10.1038/s41586-021-03553-9 |
| [36] |
Al-Aly Z., Xie Y. Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19 // Nature. 2021. Vol. 594, No. 7862. P. 259–264. DOI: 10.1038/s41586-021-03553-9 |
| [37] |
Dotan A, Muller S, Kanduc D, et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity. Autoimmun Rev. 2021;20(4):102792. DOI: 10.1016/j.autrev.2021.102792 |
| [38] |
Dotan A., Muller S., Kanduc D., et al. The SARS-CoV-2 as an instrumental trigger of autoimmunity // Autoimmun. Rev. 2021. Vol. 20, No. 4. P. 102792. DOI: 10.1016/j.autrev.2021.102792 |
| [39] |
Baranzini SE, Wang J, Gibson RA, et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Hum Mol Genet. 2009;18(4):767–778. DOI: 10.1093/hmg/ddn388 |
| [40] |
Baranzini S.E., Wang J., Gibson R.A., et al. Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis // Hum. Mol. Genet. 2009. Vol. 18, No. 4. P. 767–778. DOI: 10.1093/hmg/ddn388 |
| [41] |
Lourenço CM, Dupré N, Rivière JB, et al. Expanding the differential diagnosis of inherited neuropathies with non-uniform conduction: Andermann syndrome. J Peripher Nerv Syst. 2012;17(1):123–127. DOI: 10.1111/j.1529-8027.2012.00374.x |
| [42] |
Lourenço C.M., Dupré N., Rivière J.B., et al. Expanding the differential diagnosis of inherited neuropathies with non-uniform conduction: Andermann syndrome // J. Peripher. Nerv. Syst. 2012. Vol. 17, No. 1. P. 123–127. DOI: 10.1111/j.1529-8027.2012.00374.x |
| [43] |
Song E, Bartley CM, Chow RD, et al. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms. Cell Rep Med. 2021;2(5):100288. DOI: 10.1016/j.xcrm.2021.100288 |
| [44] |
Song E., Bartley C.M., Chow R.D., et al. Divergent and self-reactive immune responses in the CNS of COVID-19 patients with neurological symptoms // Cell Rep. Med. 2021. Vol. 2, No. 5. P. 100288. DOI: 10.1016/j.xcrm.2021.100288 |
| [45] |
Xiao M, Zhang Y, Zhang S, et al. Antiphospholipid Antibodies in Critically Ill Patients With COVID-19. Arthritis Rheumatol. 2020;72(12):1998–2004. DOI: 10.1002/art.41425 |
| [46] |
Xiao M,. Zhang Y., Zhang S., et al. Antiphospholipid Antibodies in Critically Ill Patients With COVID-19 // Arthritis. Rheumatol. 2020. Vol. 72, No. 12. P. 1998–2004. DOI: 10.1002/art.41425 |
| [47] |
Bertin D, Brodovitch A, Beziane A, et al. Anticardiolipin IgG Autoantibody Level Is an Independent Risk Factor for COVID-19 Severity. Arthritis Rheumatol. 2020;72(11):1953–1955. DOI: 10.1002/art.41409 |
| [48] |
Bertin D., Brodovitch A., Beziane A., et al. Anticardiolipin IgG Autoantibody Level Is an Independent Risk Factor for COVID-19 Severity // Arthritis. Rheumatol. 2020. Vol. 72, No. 11. P. 1953–1955. DOI: 10.1002/art.41409 |
| [49] |
Wang EY, Mao T, Klein J, et al. Diverse Functional Autoantibodies in Patients with COVID-19. Nature. 2021;595(7866):283–288. DOI: 10.1101/2020.12.10.20247205 |
| [50] |
Wang E.Y., Mao T., Klein J., et al. Diverse Functional Autoantibodies in Patients with COVID-19 // Nature. 2021. Vol. 595, No. 7866. P. 283–288. DOI: 10.1101/2020.12.10.20247205 |
| [51] |
Woodruff MC, Ramonell RP, Nguyen DC, et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19. Nat Immunol. 2020;21(12):1506–1516. DOI: 10.1038/s41590-020-00814-z |
| [52] |
Woodruff M.C., Ramonell R.P., Nguyen D.C., et al. Extrafollicular B cell responses correlate with neutralizing antibodies and morbidity in COVID-19 // Nat. Immunol. 2020. Vol. 21, No. 12. P. 1506–1516. DOI: 10.1038/s41590-020-00814-z |
| [53] |
Jenks SA, Cashman KS, Zumaquero E, et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity. 2018;49(4):725–739.e6. DOI: 10.1016/j.immuni.2018.08.015. Erratum in: Immunity. 2020;52(1):203. DOI: 10.1016/j.immuni.2019.12.005 |
| [54] |
Jenks S.A., Cashman K.S., Zumaquero E., et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus // Immunity. 2018. Vol. 49, No. 4. P. 725–739.e6. DOI: 10.1016/j.immuni.2018.08.015. Erratum in: Immunity. 2020. Vol. 52, No. 1. P. 203. DOI: 10.1016/j.immuni.2019.12.005 |
| [55] |
Latorre D. Autoimmunity and SARS-CoV-2 infection: Unraveling the link in neurological disorders. Eur J Immunol. 2022;52(10): 1561–1571. DOI: 10.1002/eji.202149475 |
| [56] |
Latorre D. Autoimmunity and SARS-CoV-2 infection: Unraveling the link in neurological disorders // Eur. J. Immunol. 2022. Vol. 52, No. 10. P. 1561–1571. DOI: 10.1002/eji.202149475 |
| [57] |
Garg RK, Paliwal VK, Gupta A. Spinal cord involvement in COVID-19: A review. J Spinal Cord Med. 2021;11:1–15. DOI: 10.1080/10790268.2021.1888022 |
| [58] |
Garg R.K., Paliwal V.K., Gupta A. Spinal cord involvement in COVID-19: A review // J. Spinal. Cord. Med. 2021. Vol. 11. P. 1–15. DOI: 10.1080/10790268.2021.1888022 |
| [59] |
West TW, Hess C, Cree BA. Acute transverse myelitis: demyelinating, inflammatory, and infectious myelopathies. Semin Neurol. 2012;32(2):97–113. DOI: 10.1055/s-0032-1322586 |
| [60] |
West T.W., Hess C., Cree B.A. Acute transverse myelitis: demyelinating, inflammatory, and infectious myelopathies // Semin. Neurol. 2012. Vol. 32, No. 2. P. 97–113. DOI: 10.1055/s-0032-1322586 |
| [61] |
Román GC, Gracia F, Torres A, et al. Acute Transverse Myelitis (ATM): Clinical Review of 43 Patients With COVID-19-Associated ATM and 3 Post-Vaccination ATM Serious Adverse Events With the ChAdOx1 nCoV-19 Vaccine (AZD1222). Front Immunol. 2021;12:653786. DOI: 10.3389/fimmu.2021.653786 |
| [62] |
Román G.C., Gracia F., Torres A., et al. Acute Transverse Myelitis (ATM): Clinical Review of 43 Patients With COVID-19-Associated ATM and 3 Post-Vaccination ATM Serious Adverse Events With the ChAdOx1 nCoV-19 Vaccine (AZD1222). // Front. Immunol. 2021. Vol. 12. P. 653786. DOI: 10.3389/fimmu.2021.653786 |
| [63] |
Kozlova AO, Eliseeva DD, Simaniv TO, et al. Autoimmune spinal cord lesions associated with novel coronavirus infection. Neurology, Neuropsychiatry, Psychosomatics. 2022;14(Suppl 1):21–28. (In Russ.) DOI: 10.14412/2074-2711-2022.1S-21-28 |
| [64] |
Козлова А.О., Елисеева Д.Д., Симанив Т.О., и др. Аутоиммунные поражения спинного мозга, ассоциированные с новой коронавирусной инфекцией // Неврология, нейропсихиатрия, психосоматика. 2022. № 14 (Прил. 1). C. 21–28. DOI: 10.14412/2074-2711-2022.1S-21-28 |
| [65] |
Ramanathan S, Mohammad S, Tantsis E, et al. Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination. J Neurol Neurosurg Psychiatry. 2018;89(2):127–137. DOI: 10.1136/jnnp-2017-316880 |
| [66] |
Ramanathan S., Mohammad S., Tantsis E., et al. Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination // J. Neurol. Neurosurg. Psychiatry. 2018. Vol. 89, No. 2. P. 127–137. DOI: 10.1136/jnnp-2017-316880 |
| [67] |
Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. DOI: 10.1016/s0140-6736(20)30628-0 |
| [68] |
Mehta P., McAuley D.F., Brown M., et al. COVID-19: consider cytokine storm syndromes and immunosuppression // Lancet. 2020. Vol. 395, No. 10229. P. 1033–1034. DOI: 10.1016/s0140–6736(20)30628-0 |
| [69] |
Lambe J, McGinley MP, Moss BP, et al. Myelin oligodendrocyte glycoprotein-IgG associated disorders (MOGAD) following SARS-CoV-2 infection: A case series. J Neuroimmunol. 2022;370:577933. DOI: 10.1016/j.jneuroim.2022.577933 |
| [70] |
Lambe J., McGinley M.P., Moss B.P., et al. Myelin oligodendrocyte glycoprotein-IgG associated disorders (MOGAD) following SARS-CoV-2 infection: A case series // J. Neuroimmunol. 2022. Vol. 370. P. 577933. DOI: 10.1016/j.jneuroim.2022.577933 |
| [71] |
Colantonio MA, Nwafor DC, Jaiswal S, et al. Myelin oligodendrocyte glycoprotein antibody-associated optic neuritis and myelitis in COVID-19: a case report and a review of the literature. Egypt J Neurol Psychiatr Neurosurg. 2022;58(1):62. DOI: 10.1186/s41983-022-00496-4 |
| [72] |
Colantonio M.A., Nwafor D.C., Jaiswal S., et al. Myelin oligodendrocyte glycoprotein antibody-associated optic neuritis and myelitis in COVID-19: a case report and a review of the literature // Egypt. J. Neurol. Psychiatr. Neurosurg. 2022. Vol. 58, No. 1. P. 62. DOI: 10.1186/s41983-022-00496-4 |
| [73] |
Mariotto S, Carta S, Dinoto A, et al. Is there a correlation between MOG-associated disorder and SARS-CoV-2 infection? Eur J Neurol. 2022;29(6):1855–1858. DOI: 10.1111/ene.15304 |
| [74] |
Mariotto S., Carta S., Dinoto A., et al. Is there a correlation between MOG-associated disorder and SARS-CoV-2 infection? // Eur. J. Neurol. 2022. Vol. 29, No. 6. P. 1855–1858. DOI: 10.1111/ene.15304 |
| [75] |
Marignier R, Hacohen Y, Cobo-Calvo A, et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease. Lancet Neurol. 2021;20(9):762–772. Erratum in: Lancet Neurol. 2021;20(10):e6. Erratum in: Lancet Neurol. 2022;21(1):e1. PMID: 34418402. DOI: 10.1016/s1474-4422(21)00218-0 |
| [76] |
Marignier R., Hacohen Y., Cobo-Calvo A., et al. Myelin-oligodendrocyte glycoprotein antibody-associated disease // Lancet Neurol. 2021. Vol. 20, No. 9. P. 762–772. Erratum in: Lancet Neurol. 2021. Vol. 20, No. 10. P. e6. Erratum in: Lancet Neurol. 2022. Vol. 21, No. 1. P. e1. PMID: 34418402. DOI: 10.1016/s1474-4422(21)00218-0 |
| [77] |
Yi MH, Lee YS, Kang JW, et al. NFAT5-dependent expression of AQP4 in astrocytes. Cell Mol Neurobiol. 2013;33(2):223–232. DOI: 10.1007/s10571-012-9889-0 |
| [78] |
Yi M.H., Lee Y.S., Kang J.W., et al. NFAT5-dependent expression of AQP4 in astrocytes // Cell. Mol. Neurobiol. 2013. Vol. 33, No. 2. P. 223–232. DOI: 10.1007/s10571-012-9889-0 |
| [79] |
Carnero Contentti E, Correale J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies. J Neuroinflammation. 2021;18(1):208. DOI: 10.1186/s12974-021-02249-1 |
| [80] |
Carnero Contentti E., Correale J. Neuromyelitis optica spectrum disorders: from pathophysiology to therapeutic strategies // J. Neuroinflammation. 2021. Vol. 18, No. 1. P. 208. DOI: 10.1186/s12974-021-02249-1 |
| [81] |
Machado C, Amorim J, Rocha J, et al. Neuromyelitis optica spectrum disorder and varicella-zoster infection. J Neurol Sci. 2015;358(1Pt 2):520–521. DOI: 10.1016/j.jns.2015.09.374 |
| [82] |
Machado C., Amorim J., Rocha J., et al. Neuromyelitis optica spectrum disorder and varicella-zoster infection // J. Neurol. Sci. 2015. Vol. 358, No. 1–2. P. 520–521. DOI: 10.1016/j.jns.2015.09.374 |
| [83] |
Harris MK, Maghzi AH, Etemadifar M, et al. Acute demyelinating disorders of the central nervous system. Curr Treat Options Neurol. 2009;11(1):55–63. DOI: 10.1007/s11940-009-0008-6 |
| [84] |
Harris M.K., Maghzi A.H., Etemadifar M., et al. Acute demyelinating disorders of the central nervous system // Curr. Treat. Options Neurol. 2009. Vol. 11, No. 1. P. 55–63. DOI: 10.1007/s11940-009-0008-6 |
| [85] |
Mirmosayyeb O, Ghaffary EM, Bagherieh S, et al. Post COVID-19 infection neuromyelitis optica spectrum disorder (NMOSD): A case report-based systematic review. Mult Scler Relat Disord. 2022;60:103697. DOI: 10.1016/j.msard.2022.103697 |
| [86] |
Mirmosayyeb O., Ghaffary E.M., Bagherieh S., et al. Post COVID-19 infection neuromyelitis optica spectrum disorder (NMOSD): A case report-based systematic review // Mult. Scler. Relat. Disord. 2022. Vol. 60. P. 103697. DOI: 10.1016/j.msard.2022.103697 |
Eco-Vector
/
| 〈 |
|
〉 |