Graphene as the basis of biological sensors for the diagnosis of neurodegenerative dementia

Sergey V. Vorobev , Ivan K. Ternovykh , Aleksandr A. Lebedev , Aleksandr N. Smirnov , Aleksandr S. Usikov , Sergey P. Lebedev

Russian Military Medical Academy Reports ›› 2022, Vol. 41 ›› Issue (4) : 421 -428.

PDF
Russian Military Medical Academy Reports ›› 2022, Vol. 41 ›› Issue (4) :421 -428. DOI: 10.17816/rmmar111884
Reviews
review-article

Graphene as the basis of biological sensors for the diagnosis of neurodegenerative dementia

Author information +
History +
PDF

Abstract

Cognitive disorders are currently being considered within the framework of the most pressing problems of modern clinical neurology in particular and medicine in general. Their significance is due to both the significant negative impact on the health and quality of life of patients, as well as the condition of their immediate relatives and society as a whole. In addition, widespread violations of higher cortical functions significantly affect the financial and economic indicators of individual groups of individuals and the state. These provisions determine the need to search for new highly effective ways of managing patients. The solution of this problem is impossible without the introduction of effective diagnostic methods that allow rapid and qualitative verification of the pathological process, especially at its early stages. Given the fact that Alzheimer’s disease plays a major role in the development of dementia in old age, the development of its diagnostic methods is the interest area for the researchers. Currently used diagnostic algorithms, which include, in addition to neuropsychological examination, such methods as the study of the content of β-amyloid and τ-protein in the cerebrospinal fluid, positron emission tomography, a number of others are either invasive or require expensive specialized equipment and have a high financial cost. This leads to a significant limitation of their use in everyday clinical practice. At the same time, certain successes have been achieved recently in the field of the introduction of nanotechnology products into medical science. This is the direction for the further prospects for the development of diagnostic and therapeutic strategies. One of the materials obtained in this direction is graphene, which is a two-dimensional allotropic modification of carbon with a number of specific physical properties. Currently biological sensors based on graphene are being developed, which have high sensitivity and specificity to the biomarkers under study and allow them to be determined in extremely low concentrations. The research in this direction may lead to the creation of a new diagnostic method that allows for the effective diagnosis of Alzheimer’s disease in the early stages, including at the outpatient level.

Keywords

Alzheimer’s disease / beta-amyloid / biological sensor / biomarker / cognitive impairment / dementia / graphene / neurodegeneration

Cite this article

Download citation ▾
Sergey V. Vorobev, Ivan K. Ternovykh, Aleksandr A. Lebedev, Aleksandr N. Smirnov, Aleksandr S. Usikov, Sergey P. Lebedev. Graphene as the basis of biological sensors for the diagnosis of neurodegenerative dementia. Russian Military Medical Academy Reports, 2022, 41(4): 421-428 DOI:10.17816/rmmar111884

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol. 2011;7(3):137–152. DOI: 10.1038/nrneurol.2011.2

[2]

Reitz C., Brayne C., Mayeux R. Epidemiology of Alzheimer disease // Nat. Rev. Neurol. 2011. Vol. 7, No. 3. P. 137–152. DOI: 10.1038/nrneurol.2011.2

[3]

Tahami Monfared AA, Byrnes MJ, White LA, Zhang Q. Alzheimer’s Disease: Epidemiology and Clinical Progression. Neurol Ther. 2022;11(2):553–569. DOI: 10.1007/s40120-022-00338-8

[4]

Tahami Monfared A.A., Byrnes M.J., White L.A., Zhang Q. Alzheimer’s Disease: Epidemiology and Clinical Progression // Neurol. Ther. 2022. Vol. 11, No. 2. P. 553–569. DOI: 10.1007/s40120-022-00338-8

[5]

Elonheimo HM, Andersen HR, Katsonouri A, Tolonen H. Environmental Substances Associated with Alzheimer’s Disease-A Scoping Review. Int J Environ Res Public Health. 2021;18(22):11839. DOI: 10.3390/ijerph182211839

[6]

Elonheimo H.M., Andersen H.R., Katsonouri A., Tolonen H. Environmental Substances Associated with Alzheimer’s Disease-A Scoping Review // Int. J. Environ. Res. Public Health. 2021. Vol. 18, No. 22. P. 11839. DOI: 10.3390/ijerph182211839

[7]

McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheim dement. 2011;7(3):263–269. DOI: 10.1016/j.jalz.2011.03.005

[8]

McKhann G.M., Knopman D.S., Chertkow H., et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease // Alzheim. dement. 2011. Vol. 7, No. 3. P. 263–269. DOI: 10.1016/j.jalz.2011.03.005

[9]

Jack CR, Albert MS, Knopman DS, et al. Introduction to the recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheim dement. 2011;7(3):257–262. DOI: 10.1016/j.jalz.2011.03.004

[10]

Jack C.R., Albert M.S., Knopman D.S., et al. Introduction to the recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease // Alzheim. dement. 2011. Vol. 7, No. 3. P. 257–262. DOI: 10.1016/j.jalz.2011.03.004

[11]

Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheim dement. 2011;7(3):280–292. DOI: 10.1016/j.jalz.2011.03.003

[12]

Sperling R.A., Aisen P.S., Beckett L.A., et al. Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease // Alzheim. dement. 2011. Vol. 7, No. 3. P. 280–292. DOI: 10.1016/j.jalz.2011.03.003

[13]

Albert MS, DeKosky ST, Dickson D, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheim Dement. 2011;7(3):270–279. DOI: 10.1016/j.jalz.2011.03.008

[14]

Albert M.S., DeKosky S.T., Dickson D., et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging–Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease // Alzheim. Dement. 2011. Vol. 7, No. 3. P. 270–279. DOI: 10.1016/j.jalz.2011.03.008

[15]

Emelin AYu, Lobzin VYu, Vorob’ev SV. Cognitive disorders: a guide for doctors. Moscow: T8 Izdatel’skiуe Tekhnologii Publishing House; 2019. 416 p. (In Russ.)

[16]

Емелин А.Ю., Лобзин В.Ю., Воробьев С.В. Когнитивные нарушения: руководство для врачей. М.: Т 8 Издательские Технологии, 2019. 416 с.

[17]

d’Abramo C, D’Adamio L, Giliberto L. Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer’s Disease: Sensitivity, Specificity and Potential for Clinical Use. J Pers Med. 2020;10(3):116. DOI: 10.3390/jpm10030116

[18]

d’Abramo C., D’Adamio L., Giliberto L. Significance of Blood and Cerebrospinal Fluid Biomarkers for Alzheimer’s Disease: Sensitivity, Specificity and Potential for Clinical Use // J. Pers. Med. 2020. Vol. 10, No. 3. P. 116. DOI: 10.3390/jpm10030116

[19]

Harada R, Okamura N, Furumoto S, et al. Characteristics of Tau and Its Ligands in PET Imaging. Biomolecules. 2016;6(1):7. DOI: 10.3390/biom6010007

[20]

Harada R., Okamura N., Furumoto S., et al. Characteristics of Tau and Its Ligands in PET Imaging // Biomolecules. 2016. Vol. 6, No. 1. P. 7. DOI: 10.3390/biom6010007

[21]

Camus V, Payoux P, Barré L, et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging. 2012;39(4):621–631. DOI: 10.1007/s00259-011-2021-8

[22]

Camus V., Payoux P., Barré L., et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment // Eur. J. Nucl. Med. Mol. Imaging. 2012. Vol. 39, No. 4. P. 621–631. DOI: 10.1007/s00259-011-2021-8

[23]

Mielke MM, Hagen CE, Wennberg AMV, et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging. JAMA Neurol. 2017;74:1073–1080. DOI: 10.1001/jamaneurol.2017.1359

[24]

Mielke M.M., Hagen C.E., Wennberg A.M.V., et al. Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging // JAMA Neurol. 2017. Vol. 74. P. 1073–1080. DOI: 10.1001/jamaneurol.2017.1359

[25]

Hanon O, Vidal JS, Lehmann S, et al. Plasma amyloid levels within the Alzheimer’s process and correlations with central biomarkers. Alzheimers Dement. 2018;14:858–868. DOI: 10.1016/j.jalz.2018.01.004

[26]

Hanon O., Vidal J.S., Lehmann S., et al. Plasma amyloid levels within the Alzheimer’s process and correlations with central biomarkers // Alzheimers Dement. 2018. Vol. 14. P. 858–868. DOI: 10.1016/j.jalz.2018.01.004

[27]

Jia L, Qiu Q, Zhang H, et al. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement. 2019;15:1071–1080. DOI: 10.1016/j.jalz.2019.05.002

[28]

Jia L., Qiu Q., Zhang H., et al. Concordance between the assessment of Aβ42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid // Alzheimers Dement. 2019. Vol. 15. P. 1071–1080. DOI: 10.1016/j.jalz.2019.05.002

[29]

Lebedev AA, Davydov VYu, Novikov SN, et al. Graphene-based biosensors. Technical Physics Letters. 2016;42(14):28–35. (In Russ.) DOI: journals.ioffe.ru/articles/viewPDF/43411

[30]

Лебедев А.А., Давыдов В.Ю., Новиков С.Н., и др. Биосенсоры на основе графена // Письма в Журнал технической физики. 2016. Т. 42, № 14. С. 28–35. DOI: journals.ioffe.ru/articles/viewPDF/43411

[31]

Chauhan N, Maekawa T, Kumar DNS. Graphene based biosensors-Accelerating medical diagnostics to new-dimensions. J Mater Res. 2017;32(15):2860–2882. DOI: 10.1557/jmr.2017.91

[32]

Chauhan N., Maekawa T., Kumar D.N.S. Graphene based biosensors-Accelerating medical diagnostics to new-dimensions // J. Mater. Res. 2017. Vol. 32, No. 15. P. 2860–2882. DOI: 10.1557/jmr.2017.91

[33]

Li M, Yang X, Ren J, et al. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease. Adv Mater. 2012;24(13):1722–1728. DOI: 10.1002/adma.201104864

[34]

Li M., Yang X., Ren J., et al. Using graphene oxide high near-infrared absorbance for photothermal treatment of Alzheimer’s disease // Adv. Mater. 2012. Vol. 24, No. 13. P. 1722–1728. DOI: 10.1002/adma.201104864

[35]

Demeritte T, Nellore BP, Kanchanapally R, et al. Hybrid Graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplatform for Selective Separation and Label-Free Identification of Alzheimer’s Disease Biomarkers. ACS Appl Mater Interfaces. 2015;7(24): 13693–13700. DOI: 10.1021/acsami.5b03619

[36]

Demeritte T., Nellore B.P., Kanchanapally R., et al. Hybrid Graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplatform for Selective Separation and Label-Free Identification of Alzheimer’s Disease Biomarkers // ACS Appl. Mater. Interfaces. 2015. Vol. 7, No. 24. P. 13693–13700. DOI: 10.1021/acsami.5b03619

[37]

Chae MS, Kim J, Jeong D, et al. Enhancing surface functionality of reduced graphene oxide biosensors by oxygen plasma treatment for Alzheimer’s disease diagnosis. Biosens Bioelectron. 2017;92: 610–617. DOI: 10.1016/j.bios.2016.10.049

[38]

Chae M.S., Kim J., Jeong D., et al. Enhancing surface functionality of reduced graphene oxide biosensors by oxygen plasma treatment for Alzheimer’s disease diagnosis // Biosens Bioelectron. 2017. Vol. 92. P. 610–617. DOI: 10.1016/j.bios.2016.10.049

[39]

Leszek J, Md Ashraf G, Tse WH, et al. Nanotechnology for Alzheimer Disease. Curr Alzheimer Res. 2017;14(11):1182–1189. DOI: 10.2174/1567205014666170203125008

[40]

Leszek J., Md Ashraf G., Tse W.H., et al. Nanotechnology for Alzheimer Disease // Curr. Alzheimer Res. 2017. Vol. 14, No. 11. P. 1182–1189. DOI: 10.2174/1567205014666170203125008

[41]

Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials (Basel). 2021;11(4):967. DOI: 10.3390/nano11040967

[42]

Speranza G. Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications // Nanomaterials (Basel). 2021. Vol. 11, No. 4. P. 967. DOI: 10.3390/nano11040967

[43]

Sainz-Urruela C, Vera-López S, San Andrés MP, Díez-Pascual AM. Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review. Int J Mol Sci. 2021;22(7):3316. DOI: 10.3390/ijms22073316

[44]

Sainz-Urruela C., Vera-López S., San Andrés M.P., Díez-Pascual A.M. Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review // Int. J. Mol. Sci. 2021. Vol. 22, No. 7. P. 3316. DOI: 10.3390/ijms22073316

[45]

Rembach A, Faux NG, Watt AD, et al. Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimer’s disease. Alzheimers Dement. 2014;10:53–61. DOI: 10.1016/j.jalz.2012.12.006

[46]

Rembach A., Faux N.G., Watt A.D., et al. Changes in plasma amyloid beta in a longitudinal study of aging and Alzheimer’s disease // Alzheimers Dement. 2014. Vol. 10. P. 53–61. DOI: 10.1016/j.jalz.2012.12.006

[47]

Davies DR, Sheriff S, Padlan EA. Antibody-Antigen Complexes. J Biological Chemistry. 1988.263(22):10541–10544. DOI: 10.1146/annurev.biochem.59.1.439

[48]

Davies D.R., Sheriff S., Padlan E.A. Antibody-Antigen Complexes // J. Biological Chemistry. 1988. Vol. 263, No. 22. P. 10541–10544. DOI: 10.1146/annurev.biochem.59.1.439

[49]

Usikov AS, Lebedev SP, Roenkov AD, et al. Investigation of the sensitivity of graphene for use as biosensors. Technical Physics Letters. 2020; 46(10): 3–6. (In Russ.) DOI: 10.21883/PJTF.2020.10.49421.18250

[50]

Усиков A.С., Лебедев С.П., Роенков А.Д., и др. Исследование чувствительной способности графена для применений в качестве биосенсоров // Письма в журнал технической физики. 2020. Т. 46, № 10. С. 3–6.

[51]

Sun L, Zhong Y, Gui J, et al. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers. Int J Nanomedicine. 2018;13:843–856. DOI: 10.2147/IJN.S152163

[52]

Sun L., Zhong Y., Gui J., et al. A hydrogel biosensor for high selective and sensitive detection of amyloid-beta oligomers // Int. J. Nanomedicine. 2018. Vol. 13. P. 843–856. DOI: 10.2147/IJN.S152163

[53]

Toyos-Rodríguez C, García-Alonso FJ, de la Escosura-Muñiz A. Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer’s Disease. Sensors (Basel). 2020;20(17):4748. DOI: 10.3390/s20174748

[54]

Toyos-Rodríguez C., García-Alonso F.J., de la Escosura-Muñiz A. Electrochemical Biosensors Based on Nanomaterials for Early Detection of Alzheimer’s Disease // Sensors (Basel). 2020. Vol. 20, No. 17. P. 4748. DOI: 10.3390/s20174748

Funding

Грант Российского научного фонда (РНФ)Grant of the Russian Science Foundation(№ 22-12-00134)

RIGHTS & PERMISSIONS

Eco-Vector

PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

/