The effectiveness of the use of mesenchymal stromal cells for the treatment of lacerated wounds under conditions of hypothermia and hypoxia
Marina V. Volkova , Valery V. Boyarintsev , Alexander V. Trofimenko , Sergey P. Rybalkin , Elena V. Kovaleva , Stanislav A. Biryukov , Gleb I. Fil'kov , Michail O. Durymanov
Russian Military Medical Academy Reports ›› 2022, Vol. 41 ›› Issue (3) : 261 -268.
The effectiveness of the use of mesenchymal stromal cells for the treatment of lacerated wounds under conditions of hypothermia and hypoxia
BACKGROUND: Patients Arctic conditions complicate the pathogenesis of various skin and soft tissue injuries. For the treatment of these diseases, the possibility of using multipotent mesenchymal stromal cells, which promote the proliferation of granular tissue cells, angiogenesis, and reduce the duration of the inflammatory phase during wound healing due to the secretion of cytokines and growth factors, is being considered.
AIM: In order to evaluate the effectiveness of cell therapy, experimental studies were carried out on the model of a lacerated wound in rats under conditions of hypoxia and hypothermia.
MATERIALS AND METHODS: The animals were kept in a climate chamber (15% oxygen, 4°C) for 48 hours. Injury was applied 24 hours after placement in controlled conditions. The introduction of stem cells was carried out a day after the wound was applied. Mesenchymal stromal cells obtained from the red bone marrow of Wistar rats were used for injection. The cell culture used had an immunophenotype corresponding to stem cells and had the ability to differentiate in the osteogenic, chondrogenic and adipogenic directions. During the study, the degree of inflammatory reaction in injured tissues and the presence of possible pathological discharges from the wound canal were assessed in rats, and the thickness of the injured paw was measured.
RESULTS: The stimulating effect of the suspension of mesenchymal stem cells on the dynamics of reducing the edema of the injured hip by 10% was established compared to the control group. To describe the process of inflammation, a histological analysis was performed on the 6th and 21st days after the wound was applied. On the 6th day of the study, a weak infiltration of lymphocytes in the muscle tissue was noted in rats that were injected with MMSC, which may indicate an earlier transition of the wound process to the proliferative phase.
CONCLUSION: The stimulating effect of the suspension of mesenchymal stem cells on the dynamics of reducing the edema of the injured hip by 10% was established compared to the control group.
animal model / cell product / hypothermia / hypoxia / injury / regenerative medicine / stem cells / wound healing action
| [1] |
Zdravookhraneniye v Rossii. 2021. Statistical compendium. Moscow: Rosstat Publisher; 2021. 171 p. (In Russ.) |
| [2] |
Здравоохранение в России. 2021. Статистический сборник. М.: Росстат, 2021. 171 с. |
| [3] |
Chernikov OG, Kulnev SV, Kupriyanov SA, et al. Features of the organization of medical support for troops (forces) in the arctic zone. Military Medical Journal. 2020;341(4):4–11. (In Russ.) |
| [4] |
Черников О.Г., Кульнев С.В., Куприянов С.А., и др. Особенности организации медицинского обеспечения группировок войск (сил) в арктической зоне // Военно-медицинский журнал. 2020. Т. 341, № 4. С. 4–11. |
| [5] |
Tamama K, Kerpedjieva SS. Acceleration of wound healing by multiple growth factors and cytokines secreted from multipotential stromal cells/mesenchymal stem cells. Advances in Wound Care. 2012;1(4):177–182. DOI: 10.1089/wound.2011.0296 |
| [6] |
Tamama K., Kerpedjieva S.S. Acceleration of wound healing by multiple growth factors and cytokines secreted from multipotential stromal cells/mesenchymal stem cells // Advances in Wound Care. 2012. Vol. 1, No. 4. P. 177–182. DOI: 10.1089/wound.2011.0296 |
| [7] |
Alexandrov VN, Bolekhan VN, Buntovskaya AS, et al. Development of cell technology, molecular genetics and tissue engineering in S.M. Kirov Military Medical Academy and Military Innovation Technopolis “Era”. Bulletin of the Russian Military Medical Academy. 2019(3): 243–248. (In Russ.) |
| [8] |
Александров В.Н., Болехан В.Н., Бунтовская А.С., и др. Развитие клеточных технологий, молекулярно-генетических исследований и тканевой инженерии в Военно-медицинской академии им. С.М. Кирова и Военном инновационном технополисе «Эра» // Вестник Российской Военно-медицинской академии. 2019. № 3. С. 243–248. |
| [9] |
Dash BC, Xu Z, Lin L, et al. Stem cells and engineered scaffolds for regenerative wound healing. Bioengineering. 2018;5(1):23. DOI: 10.3390/bioengineering5010023 |
| [10] |
Dash B.C., Xu Z., Lin L., et al. Stem cells and engineered scaffolds for regenerative wound healing // Bioengineering. 2018. Vol. 5, No. 1. Art. 23. DOI: 10.3390/bioengineering5010023 |
| [11] |
Slegtenhorst BR, Dor FJ, Rodriguez H, Voskuil FJ, Tullius SG. Ischemia/reperfusion injury and its consequences on immunity and inflammation. Curr Transplant Rep. 2014;1(3):147–154. DOI: 10.1007/s40472-014-0017-6 |
| [12] |
Slegtenhorst B.R., Dor F.J., Rodriguez H., Voskuil F.J., Tullius S.G. Ischemia/reperfusion injury and its consequences on immunity and inflammation // Curr. Transplant. Rep. 2014. Vol. 1, No. 3. P. 147–154. DOI: 10.1007/s40472-014-0017-6 |
| [13] |
Han Y, Li X, Zhang Y, et al. Mesenchymal stem cells for regenerative medicine. Cells. 2019;8(8):886. DOI: 10.3390/cells8080886 |
| [14] |
Han Y., Li X., Zhang Y., et al. Mesenchymal stem cells for regenerative medicine // Cells. 2019. Vol. 8, No. 8. Art. 886. DOI: 10.3390/cells8080886 |
| [15] |
Wu X, Jiang J, Gu Z, et al. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther. 2020;11(1):345. DOI: 10.1186/s13287-020-01855-9 |
| [16] |
Wu X., Jiang J., Gu Z., et al. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress // Stem. Cell Res. Ther. 2020. Vol. 11, No. 1. Art. 345. DOI: 10.1186/s13287-020-01855-9 |
| [17] |
Li H, Shen S, Fu H, et al. Immunomodulatory functions of mesenchymal stem cells in tissue engineering. Stem Cells Inl. 2019;2019:9671206. DOI: 10.1155/2019/9671206 |
| [18] |
Li H., Shen S., Fu H., et al. Immunomodulatory functions of mesenchymal stem cells in tissue engineering // Stem Cells Inl. 2019. Vol. 2019. Art. 9671206. DOI: 10.1155/2019/9671206 |
| [19] |
Fu X, Liu G, Halim A, et al. Mesenchymal stem cell migration and tissue repair. Cells. 2019;8(8):784. DOI: 10.3390/cells8080784 |
| [20] |
Fu X., Liu G., Halim A., et al. Mesenchymal stem cell migration and tissue repair // Cells. 2019. Vol. 8, No. 8. Art. 784. DOI: 10.3390/cells8080784 |
| [21] |
Soleimani M, Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc. 2009;4(1):102–106. DOI: 10.1038/nprot.2008.221 |
| [22] |
Soleimani M., Nadri S. A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow // Nat. Protoc. 2009. Vol. 4, No. 1. P. 102–106. DOI: 10.1038/nprot.2008.221 |
| [23] |
Boyarintsev VV, Trofimenko AV, Rybalkin SP, et al. Ustanovka dlya provedeniya eksperimental’nykh issledovaniy na zhivotnykh v gipoksicheskikh usloviakh pri nizkikh temperaturakh. Pat. 201120 Applicant and patent holder MIPT — No. 2020122211; decl. 07/06/2020; publ. 11/27/2020, Bull. No. 33. (In Russ.) |
| [24] |
Бояринцев В.В., Трофименко А.В., Рыбалкин С.П., и др. Установка для проведения экспериментальных исследований на животных в гипоксических условиях при низких температурах. Пат. 201120. Заявитель и патентообладатель МФТИ — № 2020122211; заявл. 06.07.2020; опубл. 27.11.2020, Бюл. № 33. |
| [25] |
Fitzsimmons REB, Mazurek MS, Soos A, Simmons CA. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering. Stem Cells Int. 2018;2018:8031718. DOI: 10.1155/2018/8031718 |
| [26] |
Fitzsimmons R.E.B., Mazurek M.S., Soos A., Simmons C.A. Mesenchymal stromal/stem cells in regenerative medicine and tissue engineering // Stem Cells Int. 2018. Vol. 2018. Art. 8031718. DOI: 10.1155/2018/8031718 |
| [27] |
Makarov VG, Makarova MN, eds. Fiziologicheskiye, biokhimicheskiye i biometricheskiye pokazateli normy eksperimental’nykh zhivotnykh: spravochnik. Saint Petersburg: Lema Publisher; 2013. 116 p. (In Russ.) |
| [28] |
Физиологические, биохимические и биометрические показатели нормы экспериментальных животных: справочник / Под ред. Макарова В.Г., Макаровой М.Н. СПб.: Лема, 2013. 116 с. |
| [29] |
Ring A, Goertz O, Steinstraesser L, et al. Analysis of biodegradation of copolymer dermis substitutes in the dorsal skinfold chamber of balb/c mice. Eur J Med Res. 2006;11(11): 471–478. |
| [30] |
Ring A., Goertz O., Steinstraesser L., et al. Analysis of biodegradation of copolymer dermis substitutes in the dorsal skinfold chamber of balb/c mice // Eur. J. Med. Res. 2006. Vol. 11, No. 11. P. 471–478. |
Eco-Vector
/
| 〈 |
|
〉 |