Pharmacological potential of ligands to receptors of RF-amide neuropeptide system

Oleg A. Yakovlev , Nikolai G. Vengerovich , Aleksandr S. Nikiforov , Maria S. Vakhviyaynen

Pharmacy Formulas ›› 2022, Vol. 4 ›› Issue (1) : 10 -17.

PDF
Pharmacy Formulas ›› 2022, Vol. 4 ›› Issue (1) :10 -17. DOI: 10.17816/phf108266
Pharmaceutical Sciences
review-article

Pharmacological potential of ligands to receptors of RF-amide neuropeptide system

Author information +
History +
PDF

Abstract

The system of neuropeptides has a significant impact on different functions of the central nervous system, acting as a launching ground for the development of new generation drugs that have a complex therapeutic effect in mood disorders, nociception, reproductive behavior with minimal side effects, which is confirmed by the data of a number of preclinical studies. The review considers a promising neuropeptide system of the RF-amide family, which can become the basis for the development of new drugs, complementing the therapeutic possibilities of physiologically active substances with a more selective effect on certain pathological processes. The main groups of neuropeptides of the RF-system were identified: neuropeptides FF, 26 RF-amides, kisspeptins, prolactin-releasing and gonadotropin-inhibiting peptides. For each of these groups descriptions of biological effects are presented, including antinoceptive action, influence on the regulation of energy homeostasis, influence on reproductive behavior, etc. A number of non-peptide ligands for RF-amide receptors developed and available for research have been identified.

Keywords

RF-amide / peptides / kisspeptin / prolactin-releasing peptide / neuropeptide FF / NPFF / neuropsychiatry / anxiety-depressive disorders / annorexigenic effect

Cite this article

Download citation ▾
Oleg A. Yakovlev, Nikolai G. Vengerovich, Aleksandr S. Nikiforov, Maria S. Vakhviyaynen. Pharmacological potential of ligands to receptors of RF-amide neuropeptide system. Pharmacy Formulas, 2022, 4(1): 10-17 DOI:10.17816/phf108266

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Koroleva S. V., Ashmarin I. P. A functional continuum of regulatory anxiety-enhancing peptides. The search for complexes providing of the optimal basis for developing inhibitory therapeutic agents. Neuroscience and Behavioral Physiology. 2006;36;157-162. https://doi.org/10.1007/s11055-005-0174-2.

[2]

Koroleva S. V., Ashmarin I. P. A functional continuum of regulatory anxiety-enhancing peptides. The search for complexes providing of the optimal basis for developing inhibitory therapeutic agents // Neuroscience and Behavioral Physiology. 2006. Vol. 36. P. 157-162. https://doi.org/10.1007/s11055-005-0174-2.

[3]

Findeisen M., Rathmann D., Beck-Sickinger A. RFamide peptides: structure, function, mechanism and pharmaceutical potential. Pharmaceuticals. 2011;4(9):1248-1280. https://doi.org/10.3390/ph4091248.

[4]

Findeisen M., Rathmann D., Beck-Sickinger A. RFamide peptides: structure, function, mechanism and pharmaceutical potential // Pharmaceuticals. 2011. Vol. 4, no. 9. P. 1248-1280. https://doi.org/10.3390/ph4091248.

[5]

Quillet R., Ayachi S., Bihel S., et al. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions. Pharmacology & Therapeutics. 2016;160:84-132. https://doi.org/10.1016/j.pharmthera.2016.02.005.

[6]

Quillet R., Ayachi S., Bihel S., et al. RF-amide neuropeptides and their receptors in Mammals: Pharmacological properties, drug development and main physiological functions // Pharmacology & Therapeutics. 2016. P. 84-132. https://doi.org/10.1016/j.pharmthera.2016.02.005.

[7]

Wang J. Q., Fibuch E. E., Sakurada S., et al. Anti-opioid peptides. In: Kastin A.J., ed. Handbook of Biologically Active Peptides. Cambridge, MA: Academic Press; 2006. 1641 p.

[8]

Wang J. Q., Fibuch E. E., Sakurada S., et al. Anti-opioid peptides. In: Handbook of Biologically Active Peptides / ed. A.J. Kastin. Cambridge, MA: Academic Press; 2006. 1641 p.

[9]

Fang Q., Jiang T. N., Li N., et al. Central administration of neuropeptide FF and related peptides attenuate systemic morphine analgesia in mice. Protein Pept Lett. 2011;18:403-409.

[10]

Fang Q., Jiang T. N., Li N., et al. Central administration of neuropeptide FF and related peptides attenuate systemic morphine analgesia in mice // Protein Pept Lett. 2011. Vol. 18. P. 403-409.

[11]

Lin Y. T., Yu Y. L., Hong W. C., et al. NPFFR2 activates the HPA axis and induces anxiogenic effects in rodents. International journal of molecular sciences. 2017; 18(8):1810-1821. https://doi.org/10.3390/ijms18081810.

[12]

Lin Y. T., Yu Y. L., Hong W. C., et al. NPFFR2 activates the HPA axis and induces anxiogenic effects in rodents // International journal of molecular sciences. 2017. Vol. 18, no. 8. P. 1810-1821. https://doi.org/10.3390/ijms18081810.

[13]

Du X., Pang T. Y. Is dysregulation of the HPA-axis a core pathophysiology mediating co-morbid depression in neurodegenerative diseases? Frontiers in psychiatry. 2015;6:32. https://doi.org/10.3389/fpsyt.2015.00032.

[14]

Du X., Pang T. Y. Is dysregulation of the HPA-axis a core pathophysiology mediating co-morbid depression in neurodegenerative diseases? // Frontiers in psychiatry. 2015. Vol. 6. P. 32. https://doi.org/10.3389/fpsyt.2015.00032.

[15]

Kim J. S., Brownjohn P. W., Dyer B. S., et al. Anxiogenic and stressor effects of the hypothalamic neuropeptide RFRP-3 are overcome by the NPFFR antagonist GJ14. Endocrinology. 2015;156(11):4152-4162. https://doi.org/10.1210/en.2015-1532.

[16]

Kim J. S., Brownjohn P. W., Dyer B. S., et al. Anxiogenic and stressor effects of the hypothalamic neuropeptide RFRP-3 are overcome by the NPFFR antagonist GJ14 // Endocrinology. 2015. Vol. 156, no. 11. P. 4152-4162. https://doi.org/10.1210/en.2015-1532.

[17]

Geraghty A. C., Muroy S. E., Zhao S., et al. Knockdown of hypothalamic RFRP3 prevents chronic stress-induced infertility and embryo resorption. eLife. 2015;4:e04316. https://doi.org/10.7554/eLife.04316.

[18]

Geraghty A. C., Muroy S. E., Zhao S., et al. Knockdown of hypothalamic RFRP3 prevents chronic stress-induced infertility and embryo resorption // eLife. 2015. Vol. 4. e04316. https://doi.org/10.7554/eLife.04316.

[19]

Ayachi S., Simonin F. Involvement of mammalian RF-amid peptides and their receptors in the modulation of nociception in rodents. Frontiers in endocrinology. 2014;5:158. https://doi.org/10.3389/fendo.2014.00158.

[20]

Ayachi S., Simonin F. Involvement of mammalian RF-amid peptides and their receptors in the modulation of nociception in rodents // Frontiers in endocrinology. 2014. Vol. 5. P. 158. https://doi.org/10.3389/fendo.2014.00158.

[21]

Leprince J., Bagnol D., Bureau R., et al. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24. British journal of pharmacology. 2017;174(20):3573-3607. https://doi.org/10.1111/bph.13907.

[22]

Leprince J., Bagnol D., Bureau R., et al. The Arg-Phe-amide peptide 26RFa/glutamine RF-amide peptide and its receptor: IUPHAR Review 24 // British journal of pharmacology. 2017. Vol. 174, no. 20. P. 3573-3607. https://doi.org/10.1111/bph.13907.

[23]

Comninos A. N., Wall M. B., Demetriou L., et al. Kisspeptin modulates sexual and emotional brain processing in humans. The Journal of clinical investigation. 2017;127(2):709-719. https://doi.org/10.1172/JCI89519.

[24]

Comninos A. N., Wall M. B., Demetriou L., et al. Kisspeptin modulates sexual and emotional brain processing in humans // The Journal of clinical investigation. 2017. Vol. 127, no. 2. P. 709-719. https://doi.org/10.1172/JCI89519.

[25]

Subbotina S.N., Yudin M.A., Parfyonova A.A., et al. Effects of Delta-sleep-inducing, Kisspeptin-10 and pt-141 Neuropeptides on Sexual Behaviour in Male Rats. Journal Biomed. 2021;17(1):43-56. https://doi.org/10.33647/2074-5982-17-1-43-56. (In Russ.).

[26]

Субботина С. Н. Влияние нейропептидов – дельта-сон-индуцирующего пептида, кисспептина-10 и РТ-141 – на половое поведение самцов крыс / С. Н. Субботина, М. А. Юдин, А. А. Парфёнова [и др.] // Биомедицина. – 2021. – Т. 17. – № 1. – C. 43-56. https://doi.org/10.33647/2074-5982-17-1-43-56.

[27]

Nikitina I. L., Yuchlina Y. N., Sarakaeva L. R., et al. Modern concept of neuroendocrine and epigenetic regulation of the onset of puberty and sexual development. Translational studies on the role of the KISS/KISS1R system. Translational Medicine. 2020;7(5):62. https://doi.org/10.17816/RCF1243-12. (In Russ.).

[28]

Никитина И. Л. Кисспептины в физиологии и патологии полового развития-новые диагностические и терапевтические возможности / И. Л. Никитина, А. А. Байрамов, Ю. Н. Ходулева [и др.] // Обзоры по клинической фармакологии и лекарственной терапии. – 2014. – Т. 12. – №. 4. – C. 3-12. https://doi.org/10.17816/RCF1243-12.

[29]

Tales M. G., Bianco S. D., Brito V. N., et al. A GPR54-activating mutation in a patient with central precocious puberty. N. Engl. J. Med. 2008;358:709-715. https://doi.org/10.1056/NEJMoa073443.

[30]

Tales M. G., Bianco S. D., Brito V. N., et al. A GPR54-activating mutation in a patient with central precocious puberty // N. Engl. J. Med. 2008. Vol. 358. P. 709-715. https://doi.org/10.1056/NEJMoa073443.

[31]

Durnein C. I., Erb K., Flemming R., et al. Effects of recombinant LH treatment on folliculogenesis and responsiveness to FSH stimulation. Hum. Reprod. 2008;23(2):421-426. https://doi.org/10.1093/humrep/dem388.

[32]

Durnein C. I., Erb K., Flemming R., et al. Effects of recombinant LH treatment on folliculogenesis and responsiveness to FSH stimulation // Hum. Reprod. 2008. Vol. 23, no. 2. P. 421-426. https://doi.org/10.1093/humrep/dem388.

[33]

Kunes J., Prazienkova V., Popelova A., et al. Prolactin-releasing peptide: a new tool for obesity treatment // J Endocrinol. 2016. Vol. 230, no. 2. P. 51-58. https://doi.org/10.1530/JOE-16-0046.

[34]

Prazienkova V., Popelove A., Kunes J., et al. Prolactine-releasing peptide: physiological and pharmacological properties. International journal of molecular science. 2019;20(21):5297. https://doi.org/10.3390/ijms20215297.

[35]

Prazienkova V., Popelove A., Kunes J., et al. Prolactine-releasing peptide: physiological and pharmacological properties // International journal of molecular science. 2019. Vol. 20, no. 21. P. 5297. https://doi.org/10.3390/ijms20215297.

[36]

Mankus J. V., McCurdy C. R. Nonpeptide ligands of neuropeptide FF: current status and structural insights. Future Med Chem. 2012;4(9):1085-1092. https://doi.org/10.4155/fmc.12.67.

[37]

Mankus J. V., McCurdy C. R. Nonpeptide ligands of neuropeptide FF: current status and structural insights // Future Med Chem. 2012. Vol. 4, no. 9. P. 1085-1092. https://doi.org/10.4155/fmc.12.67.

PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

/