Magnetic resonance imaging radiomics in prostate cancer radiology: what is currently known?
Pavel B. Gelezhe , Ivan A. Blokhin , Serafim S. Semenov , Damiano Caruso
Digital Diagnostics ›› 2021, Vol. 2 ›› Issue (4) : 441 -452.
Magnetic resonance imaging radiomics in prostate cancer radiology: what is currently known?
Diagnostic and treatment approaches in prostate cancer rely on a combination of magnetic resonance imaging and histological data.
This study aimed to introduce the basics of the current diagnostic approach in prostate cancer with a focus on texture analysis.
Texture analysis evaluates the relationships between image pixels using mathematical methods, which provide additional information. First-order texture analysis of features can have greater clinical reproducibility than higher-order texture features. Textural features that are extracted from diffusion coefficient maps have shown the greatest clinical relevance. Future research should focus on integrating machine learning methods to facilitate the use of texture analysis in clinical practice.
The development of automated segmentation methods is required to reduce the likelihood of including normal tissue in the area of interest. Texture analysis allows the noninvasive separation of patients into groups in terms of possible treatment options. Currently, few clinical studies reported on the differential diagnosis of clinically significant prostate cancer, including the Gleason and International Society of Urological Pathology grading. Large prospective studies are required to verify the diagnostic potential of textural features.
prostate cancer / magnetic resonance imaging / MRI / radiomics
| [1] |
Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol. 2019;76(3):340–351. doi: 10.1016/j.eururo.2019.02.033 |
| [2] |
Turkbey B., Rosenkrantz A.B., Haider M.A., et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2 // European Urology. 2019. Vol. 76, N 3. P. 340–351. doi: 10.1016/j.eururo.2019.02.033 |
| [3] |
Kasivisvanathan V, Rannikko AS, Borghi M, et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med. 2018;378(19):1767–1777. doi: 10.1056/NEJMoa1801993 |
| [4] |
Kasivisvanathan V., Rannikko A.S., Borghi M., et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis // N Engl J Med. 2018. Vol. 378, N 19. P. 1767–1777. doi: 10.1056/NEJMoa1801993 |
| [5] |
Ahmed HU, El-Shater Bosaily A, Brown LC, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. The Lancet. 2017;389(10071):815–822. doi: 10.1016/S0140-6736(16)32401-1 |
| [6] |
Ahmed H.U., El-Shater Bosaily A., Brown L.C., et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study // The Lancet. 2017. Vol. 389, N 10071. P. 815–822. doi: 10.1016/S0140-6736(16)32401-1 |
| [7] |
Purysko AS, Rosenkrantz AB, Barentsz JO, et al. PI-RADS version 2: a pictorial update. Radiographics. 2016;36(5):1354–1372. doi: 10.1148/rg.2016150234 |
| [8] |
Purysko A.S., Rosenkrantz A.B., Barentsz J.O., et al. PI-RADS version 2: a pictorial update // Radiographics. 2016. Vol. 36, N 5. P. 1354–1372. doi: 10.1148/rg.2016150234 |
| [9] |
Patel N, Henry A, Scarsbrook A. The value of MR textural analysis in prostate cancer. Clin Radiol. 2019;74(11):876–885. doi: 10.1016/j.crad.2018.11.007 |
| [10] |
Patel N., Henry A., Scarsbrook A. The value of MR textural analysis in prostate cancer // Clin Radiol. 2019. Vol. 74, N 11. P. 876–885. doi: 10.1016/j.crad.2018.11.007 |
| [11] |
Sala E, Mema E, Himoto Y, et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging. Clin Radiol. 2017;72(1):3–10. doi: 10.1016/j.crad.2016.09.013 |
| [12] |
Sala E., Mema E., Himoto Y., et al. Unravelling tumour heterogeneity using next-generation imaging: radiomics, radiogenomics, and habitat imaging // Clin Radiol. 2017. Vol. 72, N 1. P. 3–10. doi: 10.1016/j.crad.2016.09.013 |
| [13] |
Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep. 1966;50(3):125–128. |
| [14] |
Gleason D.F. Classification of prostatic carcinomas // Cancer Chemother Rep. 1966. Vol. 50, N 3. P. 125–128. |
| [15] |
Young JC, Jeong KK, Kim N, et al. Functional MR imaging of prostate cancer. Radiographics. 2007;27(1): 63–75. doi: 10.1148/rg.271065078 |
| [16] |
Young J.C., Jeong K.K., Kim N., et al. Functional MR imaging of prostate cancer // Radiographics. 2007. Vol. 27, N 1. P. 63–75. doi: 10.1148/rg.271065078 |
| [17] |
Nketiah G, Elschot M, Kim E, et al. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results. Eur Radiol. 2017;27(7):3050–3059. doi: 10.1007/s00330-016-4663-1 |
| [18] |
Nketiah G., Elschot M., Kim E., et al. T2-weighted MRI-derived textural features reflect prostate cancer aggressiveness: preliminary results // Eur Radiol. 2017. Vol. 27, N 7. P. 3050–3059. doi: 10.1007/s00330-016-4663-1 |
| [19] |
Morone M, Bali MA, Tunariu N, et al. Whole-body MRI: current applications in oncology. AJR Am J Roentgenol. 2017;209(6):W336–W349. doi: 10.2214/AJR.17.17984 |
| [20] |
Morone M., Bali M.A., Tunariu N., et al. Whole-body MRI: current applications in oncology // AJR Am J Roentgenol. 2017. Vol. 209, N 6. P. W336–W349. doi: 10.2214/AJR.17.17984 |
| [21] |
Nowak J, Malzahn U, Baur AD, et al. The value of ADC, T2 signal intensity, and a combination of both parameters to assess Gleason score and primary Gleason grades in patients with known prostate cancer. Acta Radiol. 2016;57(1):107–114. doi: 10.1177/0284185114561915 |
| [22] |
Nowak J., Malzahn U., Baur A.D., et al. The value of ADC, T2 signal intensity, and a combination of both parameters to assess Gleason score and primary Gleason grades in patients with known prostate cancer // Acta Radiol. 2016. Vol. 57, N 1. P. 107–114. doi: 10.1177/0284185114561915 |
| [23] |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images are more than pictures, they are data. Radiology. 2016;278(2):563–577. doi: 10.1148/radiol.2015151169 |
| [24] |
Gillies R.J., Kinahan P.E., Hricak H. Radiomics: Images are more than pictures, they are data // Radiology. 2016. Vol. 278, N 2. P. 563–577. doi: 10.1148/radiol.2015151169 |
| [25] |
Summers RM. Texture analysis in radiology: Does the emperor have no clothes? Abdom Radiol. 2017;42(2):342–345. doi: 10.1007/s00261-016-0950-1 |
| [26] |
Summers R.M. Texture analysis in radiology: does the emperor have no clothes? // Abdominal Radiology. 2017. Vol. 42, N 2. P. 342–345. doi: 10.1007/s00261-016-0950-1 |
| [27] |
Bleker J, Kwee TC, Dierckx RA, et al. Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer. Eur Radiol. 2020;30(3):1313–1324. doi: 10.1007/s00330-019-06488-y |
| [28] |
Bleker J., Kwee T.C., Dierckx R.A., et al. Multiparametric MRI and auto-fixed volume of interest-based radiomics signature for clinically significant peripheral zone prostate cancer // Eur radiol. 2020. Vol. 30, N 3. P. 1313–1324. doi: 10.1007/s00330-019-06488-y |
| [29] |
Scalco E, Rizzo G. Texture analysis of medical images for radiotherapy applications. Br J Radiol. 2017;90(1070):20160642. doi: 10.1259/bjr.20160642 |
| [30] |
Scalco E., Rizzo G. Texture analysis of medical images for radiotherapy applications // Br J Radiol. 2017. Vol. 90, N 1070. P. 20160642. doi: 10.1259/bjr.20160642 |
| [31] |
Wibmer A, Hricak H, Gondo T, et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores. Eur Radiol. 2015;25(10):2840–2850. doi: 10.1007/s00330-015-3701-8 |
| [32] |
Wibmer A., Hricak H., Gondo T., et al. Haralick texture analysis of prostate MRI: utility for differentiating non-cancerous prostate from prostate cancer and differentiating prostate cancers with different Gleason scores // Eur Radiol. 2015. Vol. 25, N 10. P. 2840–2850. doi: 10.1007/s00330-015-3701-8 |
| [33] |
Losnegard A, Reisæter L, Halvorsen OJ, et al. Magnetic resonance radiomics for prediction of extraprostatic extension in non-favorable intermediateand high-risk prostate cancer patients. Acta Radiol. 2020;61(11):1570–1579. doi: 10.1177/0284185120905066 |
| [34] |
Losnegard A., Reisæter L., Halvorsen O.J., et al. Magnetic resonance radiomics for prediction of extraprostatic extension in non-favorable intermediateand high-risk prostate cancer patients // Acta Radiol. 2020. Vol. 61, N 11. P. 1570–1579. doi: 10.1177/0284185120905066 |
| [35] |
Larue RT, Defraene G, Ruysscher DD, et al. Quantitative radiomics studies for tissue characterization: A review of technology and methodological procedures. Br J Radiol. 2017;90(1070):20160665. doi: 10.1259/bjr.20160665 |
| [36] |
Larue R.T., Defraene G., Ruysscher D., et al. Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures // Br J Radiol. 2017. Vol. 90, N 1070. P. 20160665. doi: 10.1259/bjr.20160665 |
| [37] |
Court LE, Fave X, Mackin D, et al. Computational resources for radiomics. Translational Cancer Research. 2016;5(4):340–348. doi: 10.21037/tcr.2016.06.17 |
| [38] |
Court L.E., Fave X., Mackin D., et al. Computational resources for radiomics // Translational Cancer Research. 2016. Vol. 5, N 4. P. 340–348. doi: 10.21037/tcr.2016.06.17 |
| [39] |
Laplacian of Gaussian Filter [Electronic resource]. Available from: https://academic.mu.edu/phys/matthysd/web226/Lab02.htm. Accessed: 21.11.2021. |
| [40] |
Laplacian of Gaussian Filter [электронный ресурс]. Режим доступа: https://academic.mu.edu/phys/matthysd/web226/Lab02.htm. Дата обращения: 21.11.2021. |
| [41] |
Fehr D, Veeraraghavan H, Wibmer A, et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance. Proc Natl Acad Sci U S A. 2015;112(46):E6265–E6273. doi: 10.1073/pnas.1505935112 |
| [42] |
Fehr D., Veeraraghavan H., Wibmer A., et al. Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images // Proceedings of the National Academy of Sciences of the United States of America. 2015. Vol. 112, N 46. P. E6265–E6273. doi: 10.1073/pnas.1505935112 |
| [43] |
Sidhu HS, Benigno S, Ganeshan B, et al. Textural analysis of multiparametric MRI detects transition zone prostate cancer. Eur Radiol. 2017;27(6):2348–2358. doi: 10.1007/s00330-016-4579-9 |
| [44] |
Sidhu H.S., Benigno S., Ganeshan B., et al. Textural analysis of multiparametric MRI detects transition zone prostate cancer // Eur Radiol. 2017. Vol. 27, N 6. P. 2348–2358. doi: 10.1007/s00330-016-4579-9 |
| [45] |
Vignati A, Mazzetti S, Giannini V, et al. Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness. Phys Med Biol. 2015;60(7):2685–2701. doi: 10.1088/0031-9155/60/7/2685 |
| [46] |
Vignati A., Mazzetti S., Giannini V., et al. Texture features on T2-weighted magnetic resonance imaging: new potential biomarkers for prostate cancer aggressiveness // Phys Med Biol. 2015. Vol. 60, N 7. P. 2685–2701. doi: 10.1088/0031-9155/60/7/2685 |
| [47] |
Sierra PS, Damodaran S, Jarrard D. Clinical and pathologic factors predicting reclassification in active surveillance cohorts. Int Braz J Urol. 2018;44(3):440. doi: 10.1590/S1677-5538.IBJU.2017.0320 |
| [48] |
Sierra P.S., Damodaran S., Jarrard D. Clinical and pathologic factors predicting reclassification in active surveillance cohorts // Int Braz J Urol. 2018. Vol. 44, N 3. P. 440. doi: 10.1590/S1677-5538.IBJU.2017.0320 |
| [49] |
Murciano-Goroff YR, Wolfsberger LD, Parekh A, et al. Variability in MRI vs. ultrasound measures of prostate volume and its impact on treatment recommendations for favorable-risk prostate cancer patients: a case series. Radiat Oncol. 2014;9:200. doi: 10.1186/1748-717X-9-200 |
| [50] |
Murciano-Goroff Y.R., Wolfsberger L.D., Parekh A., et al. Variability in MRI vs. ultrasound measures of prostate volume and its impact on treatment recommendations for favorable-risk prostate cancer patients: a case series // Radiat Oncol. 2014. Vol. 9. P. 200. doi: 10.1186/1748-717X-9-200 |
| [51] |
Engels RR, Israël B, Padhani AR, et al. Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: what urologists need to know. Part 1: acquisition. Eur Urology. 2020;77(4):457–468. doi: 10.1016/j.eururo.2019.09.021 |
| [52] |
Engels R.R., Israël B., Padhani A.R., et al. Multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer: what urologists need to know. Part 1: acquisition // Eur Urology. 2020. Vol. 77, N 4. P. 457–468. doi: 10.1016/j.eururo.2019.09.021 |
| [53] |
Min X, Li M, Dong D, et al. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: cross-validation of a machine learning method. Eur J Radiol. 2019;115:16–21. doi: 10.1016/j.ejrad.2019.03.010 |
| [54] |
Min X., Li M., Dong D., et al. Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: cross-validation of a machine learning method // Eur J Radiol. 2019. Vol. 115. P. 16–21. doi: 10.1016/j.ejrad.2019.03.010 |
| [55] |
Westphalen AC, McCulloch CE, Anaokar JM, et al. Variability of the positive predictive value of PI-RADS for prostate MRI across 26 centers: experience of the Society of Abdominal Radiology Prostate Cancer Disease-focused Panel. Radiology. 2020;296(1):76–84. doi: 10.1148/radiol.2020190646 |
| [56] |
Westphalen A.C., McCulloch C.E., Anaokar J.M., et al. Variability of the positive predictive value of PI-RADS for prostate MRI across 26 centers: experience of the Society of Abdominal Radiology Prostate Cancer Disease-focused Panel // Radiology. 2020. Vol. 296, N 1. P. 76–84. doi: 10.1148/radiol.2020190646 |
| [57] |
Xu L, Zhang G, Zhao L, et al. Radiomics based on multiparametric magnetic resonance imaging to predict extraprostatic extension of prostate cancer. Front Oncol. 2020;10:940. doi: 10.3389/fonc.2020.00940 |
| [58] |
Xu L., Zhang G., Zhao L., et al. Radiomics based on multiparametric magnetic resonance imaging to predict extraprostatic extension of prostate cancer // Front Oncol. 2020. Vol. 10. P. 940. doi: 10.3389/fonc.2020.00940 |
| [59] |
Kuess P, Andrzejewski P, Nilsson D, et al. Association between pathology and texture features of multi parametric MRI of the prostate. Phys Med Biol. 2017;62(19):7833–7854. doi: 10.1088/1361-6560/aa884d |
| [60] |
Kuess P., Andrzejewski P., Nilsson D., et al. Association between pathology and texture features of multi parametric MRI of the prostate // Phys Med Biol. 2017. Vol. 62, N 19. P. 7833–7854. doi: 10.1088/1361-6560/aa884d |
| [61] |
Riaz N, Afaq A, Akin O, et al. Pretreatment endorectal coil magnetic resonance imaging findings predict biochemical tumor control in prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Int J Radiat Oncol Biol Phys. 2012;84(3):707–711. doi: 10.1016/j.ijrobp.2012.01.009 |
| [62] |
Riaz N., Afaq A., Akin O., et al. Pretreatment endorectal coil magnetic resonance imaging findings predict biochemical tumor control in prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy // Int J Radiat Oncol Biol Phys. 2012. Vol. 84, N 3. P. 707–711. doi: 10.1016/j.ijrobp.2012.01.009 |
| [63] |
Gnep K, Fargeas A, Gutiérrez-Carvajal RE, et al. Haralick textural features on T2-weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer. J Magn Reson Imaging. 2017;45(1):103–117. doi: 10.1002/jmri.25335 |
| [64] |
Gnep K., Fargeas A., Gutiérrez-Carvajal R.E., et al. Haralick textural features on T2-weighted MRI are associated with biochemical recurrence following radiotherapy for peripheral zone prostate cancer // J Magn Reson Imaging. 2017. Vol. 45, N 1. P. 103–117. doi: 10.1002/jmri.25335 |
| [65] |
Ginsburg SB, Rusu M, Kurhanewicz J, et al. Computer extracted texture features on T2w MRI to predict biochemical recurrence following radiation therapy for prostate cancer. SPIE. 2014;9035:903509. doi: 10.1117/12.2043937 |
| [66] |
Ginsburg S.B., Rusu M., Kurhanewicz J., et al. Computer extracted texture features on T2w MRI to predict biochemical recurrence following radiation therapy for prostate cancer // SPIE. 2014. Vol. 9035. P. 903509. doi: 10.1117/12.2043937 |
| [67] |
Park SY, Kim CK, Park BK, et al. Prediction of biochemical recurrence following radical prostatectomy in men with prostate cancer by diffusion-weighted magnetic resonance imaging: Initial results. Eur Radiol. 2011;21(5):1111–1118. doi: 10.1007/s00330-010-1999-9 |
| [68] |
Park S.Y., Kim C.K., Park B.K., et al. Prediction of biochemical recurrence following radical prostatectomy in men with prostate cancer by diffusion-weighted magnetic resonance imaging: Initial results // European Radiology. 2011. Vol. 21, N 5. P. 1111–1118. doi: 10.1007/s00330-010-1999-9 |
| [69] |
Woo S, Kim SY, Cho JY, et al. Preoperative evaluation of prostate cancer aggressiveness: Using ADC and ADC ratio in determining gleason score. AJR Am J Roentgenol. 2016;207(1):114–120. doi: 10.2214/AJR.15.15894 |
| [70] |
Woo S., Kim S.Y., Cho J.Y., et al. Preoperative evaluation of prostate cancer aggressiveness: Using ADC and ADC ratio in determining gleason score // AJR Am J Roentgenol. 2016. Vol. 207, N 1. P. 114–120. doi: 10.2214/AJR.15.15894 |
| [71] |
Incoronato M, Aiello M, Infante T, et al. Radiogenomic analysis of oncological data: a technical survey. Int J Mol Sci. 2017;18(4):805. doi: 10.3390/ijms18040805 |
| [72] |
Incoronato M., Aiello M., Infante T., et al. Radiogenomic analysis of oncological data: a technical survey // Int J Mol Sci. 2017. Vol. 18, N 4. P. 805. doi: 10.3390/ijms18040805 |
| [73] |
Jamshidi N, Margolis DJ, Raman S, et al. Multiregional radiogenomic assessment of prostate microenvironments with multiparametric MR imaging and DNA whole-exome sequencing of prostate glands with adenocarcinoma. Radiology. 2017;284(1):109–119. doi: 10.1148/radiol.2017162827 |
| [74] |
Jamshidi N., Margolis D.J., Raman S., et al. Multiregional radiogenomic assessment of prostate microenvironments with multiparametric MR imaging and DNA whole-exome sequencing of prostate glands with adenocarcinoma // Radiology. 2017. Vol. 284, N 1. P. 109–119. doi: 10.1148/radiol.2017162827 |
| [75] |
Stoyanova R, Pollack A, Takhar M, et al. Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies. Oncotarget. 2016;7(33):53362–53376. doi: 10.18632/oncotarget.10523 |
| [76] |
Stoyanova R., Pollack A., Takhar M., et al. Association of multiparametric MRI quantitative imaging features with prostate cancer gene expression in MRI-targeted prostate biopsies // Oncotarget. 2016. Vol. 7, N 33. P. 53362–53376. doi: 10.18632/oncotarget.10523 |
Gelezhe P.B., Blokhin I.A., Semenov S.S., Caruso D.
/
| 〈 |
|
〉 |