A new artificial intelligence program for the automatic evaluation of scoliosis on frontal spinal radiographs: Accuracy, advantages and limitations

Dima Kh. I. Kassab , Irina G. Kamyshanskaya , Stanislau V. Trukhan

Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (2) : 243 -254.

PDF (2454KB)
Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (2) :243 -254. DOI: 10.17816/DD630093
Original Study Articles
research-article

A new artificial intelligence program for the automatic evaluation of scoliosis on frontal spinal radiographs: Accuracy, advantages and limitations

Author information +
History +
PDF (2454KB)

Abstract

BACKGROUND: Scoliosis is one of the most common spinal deformations that are usually diagnosed on frontal radiographs using Cobb’s method. Automatic measurement methods based on artificial intelligence can overcome many drawbacks of the usual method and can significantly save radiologist’s time.

AIM: To analyze the accuracy, advantages, and disadvantages of a newly developed artificial intelligence program for the automatic diagnosis of scoliosis and measurement of Cobb’s angle on frontal radiographs.

MATERIALS AND METHODS: In total, 114 digital radiographs were used to test the agreement of Cobb’s angle measurements between the new automatic method and the radiologist using the Bland–Altman method on Microsoft Excel. A limited clinical accuracy test was also conducted using 120 radiographs. The accuracy of the system in defining the scoliosis grade was evaluated by sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve.

RESULTS: The agreement of Cobb’s angle measurement between the system and the radiologist’s calculation was found mostly in grade 1 and 2 scoliosis. Only 2.8% of the results showed a clinically significant angle variability of >5°. The diagnostic accuracy metrics of the limited clinical trial in City Mariinsky Hospital (Saint Petersburg, Russia) also proved the reliability of the system, with a sensitivity of 0.97, specificity of 0.88, accuracy (general validity) of 0.93, and area under the receiver operating characteristic curve of 0.93.

CONCLUSION: Overall, the artificial intelligence program can automatically and accurately define the scoliosis grade and measure the angles of spinal curvatures on frontal radiographs.

Keywords

scoliosis / artificial intelligence / spine

Cite this article

Download citation ▾
Dima Kh. I. Kassab, Irina G. Kamyshanskaya, Stanislau V. Trukhan. A new artificial intelligence program for the automatic evaluation of scoliosis on frontal spinal radiographs: Accuracy, advantages and limitations. Digital Diagnostics, 2024, 5(2): 243-254 DOI:10.17816/DD630093

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Negrini S, Donzelli S, Aulisa AG, et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis. 2018;3(13). doi: 10.1186/s13013-017-0145-8

[2]

Negrini S., Donzelli S., Aulisa A.G., et al. 2016 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth // Scoliosis. 2018. Vol. 3, N 13. doi: 10.1186/s13013-017-0145-8

[3]

Birchenko NS. On the asymmetry of right and left leg loading in children with scoliosis. Fundamental’nye issledovaniya. 2005;(4):9–12. (In Russ). EDN: IUMILP

[4]

Бирченко Н.С. Об асимметрии нагружения правой и левой ноги у детей, больных сколиозом // Фундаментальные исследования. 2005. № 4. С. 9–12. EDN: IUMILP

[5]

Mironov SP, editor. Orthopedics. Clinical Guidelines. Moscow: GEOTAR-Media; 2018. (In Russ).

[6]

Ортопедия. Клинические рекомендации / под ред. С.П. Миронова. Москва : ГЭОТАР-Медиа, 2018.

[7]

Kotel’nikov GP, Lartsev YuV, Ryzhov PV. Traumatology and Orthopedics. 2nd edition, revised. Moscow: GEOTAR-Media; 2021. (In Russ).

[8]

Котельников Г.П., Ларцев Ю.В., Рыжов П.В. Травматология и ортопедия. Издание 2-е, переработанное. Москва : ГЭОТАР-Медиа, 2021.

[9]

Lenke CL. Revised glossary of terms [Internet]. Milwaukee, WI: Scoliosis Research Society; c2023 [cited 2023 Jun 05]. Available from: https://www.srs.org/professionals/online-education-and-resources/glossary/revised-glossary-of-terms

[10]

Lenke C.L. Revised glossary of terms [Internet]. Milwaukee, WI : Scoliosis Research Society; c2023 [дата обращения: 05.06.2023]. Доступ по ссылке: https://www.srs.org/professionals/online-education-and-resources/glossary/revised-glossary-of-terms

[11]

O’Brien MF, Kuklo TR, Blanke KM, et al. Radiographic Measurement Manual. Spinal Deformity Study Group. Miami, Florida: Medtronic Sofamor Danek USA; 2008.

[12]

O’Brien M.F., Kuklo T.R., Blanke K.M., et al. Radiographic Measurement Manual. Spinal Deformity Study Group. Miami, Florida : Medtronic Sofamor Danek USA, 2008.

[13]

Malfair D, Flemming AK, Dvorak MF, et al. Radiographic evaluation of scoliosis: review. American journal of roentgenology. 2010;194(3):8–22. doi: 10.2214/AJR.07.7145

[14]

Malfair D., Flemming A.K., Dvorak M.F., et al. Radiographic evaluation of scoliosis: review // American journal of roentgenology. 2010. Vol. 194, N 3. P. 8–22. doi: 10.2214/AJR.07.7145

[15]

Imhof H, Halpern B, Herneth AM, et al. Direct diagnosis in radiology. Spinal imaging. 2nd ed. Thieme; 2021.

[16]

Imhof H., Halpern B., Herneth A.M., et al. Direct diagnosis in radiology. Spinal imaging. 2nd ed. Thieme, 2021.

[17]

Kaul V, Enslin S, Gross SA. History of artificial intelligence in medicine. Gastrointest Endosc. 2020;92(4):807–812. doi: 10.1016/j.gie.2020.06.040

[18]

Kaul V., Enslin S., Gross S.A. History of artificial intelligence in medicine // Gastrointest Endosc. 2020. Vol. 92, N 4. P. 807–812. doi: 10.1016/j.gie.2020.06.040

[19]

Padalko MA, Orlov SV, Naumov AM, Nazarikov SI, Lushnikov AA. Automatic system for determining the angles of scoliotic deformity of the human spine. Vestnik IKBFU. Physics, mathematics, and technology. 2019;(3):55–68. EDN: WMPIXX

[20]

Падалко М.А., Орлов С.В., Наумов А.М., Назариков С.И., Лушников А.А. Автоматическая система определения углов сколиотической деформации позвоночника человека // Вестник Балтийского федерального университета им. И. Канта. Серия: физико-математические и технические науки. 2019. № 3. С. 55–68. EDN: WMPIXX

[21]

Lein GA, Nechaeva NS, Mammadova GМ, Smirnov AA, Statsenko MM. Automation analysis X-ray of the spine to objectify the assessment of the severity of scoliotic deformity in idiopathic scoliosis: a preliminary report. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2020;8(3):317–326. EDN: SJOTEB doi: 10.17816/PTORS34150

[22]

Леин Г.А., Нечаева Н.С., Мамедова Г.М. Автоматизация анализа рентгенограмм позвоночника для объективизации оценки степени тяжести сколиотической деформации при идиопатическом сколиозе (предварительное сообщение) // Ортопедия, травматология и восстановительная хирургия детского возраста. 2020. Т. 8, № 3. С. 317–326. EDN: SJOTEB doi: 10.17816/PTORS34150

[23]

Khanal B, Dahal L, Adhikari P, et al. Automatic Cobb angle detection using vertanra detector and vertebra corners regression. Cai Y, Wang L, Audette M, et al. Computational methods and clinical applications for spine imaging. Lecture Notes in Computer Science. Switzerland: Springer Nature, 2020. P:81–87.

[24]

Khanal B., Dahal L., Adhikari P., et al. Automatic Cobb angle detection using vertanra detector and vertebra corners regression. Cai Y, Wang L, Audette M, et al. Computational methods and clinical applications for spine imaging. Lecture Notes in Computer Science. Switzerland : Springer Nature, 2020. P. 81–87.

[25]

Horng M, Kuok S, Fu M, et al. Cobb angle measurement of spine from X-Ray images using convolutional neural network. Computational and mathematical methods in medicine. 2019;2019. doi: 10.1155/2019/6357171

[26]

Horng M., Kuok S., Fu M., et al. Cobb angle measurement of spine from X-Ray images using convolutional neural network // Computational and mathematical methods in medicine. 2019. Vol. 2019. doi: 10.1155/2019/6357171

[27]

Pan Y, Chen Q, Chen T, et al. Evaluation of a computer-aided method for measuring the Cobb angle on chest X-rays. Eur Spine journal. 2019;28(12):3035–3043. doi: 10.1007/s00586-019-06115-w

[28]

Pan Y., Chen Q., Chen T., et al. Evaluation of a computer-aided method for measuring the Cobb angle on chest X-rays // Eur Spine journal. 2019. Vol. 28, N 12. P. 3035–3043. doi: 10.1007/s00586-019-06115-w

[29]

Patent RUS database registration № 2022620577/ 17.03.2022. Kassab DKhI, Kamyshanskaya IG, Cheremisin VM, Cheremisin AA. A database of spinal radiographs with different degrees of scoliosis (XrScl). (In Russ).

[30]

Патент РФ на регистрацию базы данных № 2022620577/ 17.03.2022. Кассаб Д.Х.И., Камышанская И.Г., Черемисин В.М., Черемисин А.А. База данных рентгенограмм позвоночника со сколиозом различных степеней (XrScl).

RIGHTS & PERMISSIONS

Eco-Vector

PDF (2454KB)

519

Accesses

0

Citation

Detail

Sections
Recommended

/