Limitations of using artificial intelligence services to analyze chest x-ray imaging

Yuriy A. Vasilev , Anton V. Vladzymyrskyy , Kirill M. Arzamasov , Igor M. Shulkin , Elena V. Astapenko , Lev D. Pestrenin

Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (3) : 407 -420.

PDF
Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (3) :407 -420. DOI: 10.17816/DD626310
Original Study Articles
research-article

Limitations of using artificial intelligence services to analyze chest x-ray imaging

Author information +
History +
PDF

Abstract

BACKGROUND: Chest X-ray examination is one of the first radiology areas that started applying artificial intelligence, and it is still used to the present. However, when interpreting X-ray scans using artificial intelligence, radiologists still experience several routine restrictions that should be considered in issuing a medical report and require the attention of artificial intelligence developers to further improve the algorithms and increase their efficiency.

AIM: To identify restrictions of artificial intelligence services for analyzing chest X-ray images and assesses the clinical significance of these restrictions.

MATERIALS AND METHODS: A retrospective analysis was performed for 155 cases of discrepancies between the conclusions of artificial intelligence services and medical reports when analyzing chest X-ray images. All cases included in the study were obtained from the Unified Radiological Information Service of the Unified Medical Information and Analytical System of Moscow.

RESULTS: Of the 155 analyzed difference cases, 48 (31.0%) were false-positive and 78 (50.3%) were false-negative cases. The remaining 29 (18.7%) cases were removed from further studies because they were true positive (27) or true negative (2) in the expert review. Most (93.8%) of the 48 false-positive cases were due to the artificial intelligence service mistaking normal chest anatomy (97.8% of cases) or catheter shadow (2.2% of cases) for pneumothorax signs. Overlooked clinically significant pathologies accounted for 22.0% of false-negative scans. Nearly half of these cases (44.4%) were overlooked lung nodules. Lung calcifications (60.9%) were the most common clinically insignificant pathology.

CONCLUSIONS: Artificial intelligence services demonstrate a tendency toward over diagnosis. All false-positive cases were associated with erroneous detection of clinically significant pathology: pneumothorax, lung nodules, and pulmonary consolidation. Among false-negative cases, the rate of overlooked clinically significant pathology was low, which accounted for less than one-fourth.

Keywords

artificial intelligence / chest X-ray / reproducibility of results / reliability

Cite this article

Download citation ▾
Yuriy A. Vasilev, Anton V. Vladzymyrskyy, Kirill M. Arzamasov, Igor M. Shulkin, Elena V. Astapenko, Lev D. Pestrenin. Limitations of using artificial intelligence services to analyze chest x-ray imaging. Digital Diagnostics, 2024, 5(3): 407-420 DOI:10.17816/DD626310

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Çallı E, Sogancioglu E, van Ginneken B, et al. Deep learning for chest X-ray analysis: A survey. Medical Image Analysis. 2021;72:102125. doi: 10.1016/j.media.2021.102125

[2]

Çallı E., Sogancioglu E., van Ginneken B., et al. Deep learning for chest X-ray analysis: A survey // Medical Image Analysis. 2021. Vol. 72. P. 102125. doi: 10.1016/j.media.2021.102125

[3]

Çallı E, Sogancioglu E, van Ginneken B, et al. Deep learning for chest X-ray analysis: A survey. Medical Image Analysis. 2021;72:102125. doi: 10.1016/j.media.2021.102125

[4]

Vasilev YuA, Tyrov IA, Vladzymyrskyy AV, et al. A New Model of Organizing Mass Screening Based on Stand-Alone Artificial Intelligence Used for Fluorography Image Triage. Zdorov’e Naseleniya i Sreda Obitaniya. 2023;31(11):23–32. (In Russ.) doi: 10.35627/2219-5238/2023-31-11-23-32

[5]

Васильев Ю.А., Тыров И.А., Владзимирский А.В., и др. Новая модель организации массовых профилактических исследований, основанная на автономном искусственном интеллекте для сортировки результатов флюорографии // Здоровье населения и среда обитания. 2023. Т. 31, № 11. С. 23–32. doi: 10.35627/2219-5238/2023-31-11-23-32

[6]

Vasilev YuA, Tyrov IA, Vladzymyrskyy AV, et al. A New Model of Organizing Mass Screening Based on Stand-Alone Artificial Intelligence Used for Fluorography Image Triage. Zdorov’e Naseleniya i Sreda Obitaniya. 2023;31(11):23–32. (In Russ.) doi: 10.35627/2219-5238/2023-31-11-23-32

[7]

Akhter Y, Singh R, Vatsa M. AI-based radiodiagnosis using chest X-rays: A review. Frontiers in Big Data. 2023;6:1120989. doi: 10.3389/fdata.2023.1120989

[8]

Akhter Y., Singh R., Vatsa M. AI-based radiodiagnosis using chest X-rays: A review // Frontiers in Big Data. 2023. Vol. 6. P. 1120989. doi: 10.3389/fdata.2023.1120989

[9]

Akhter Y, Singh R, Vatsa M. AI-based radiodiagnosis using chest X-rays: A review. Frontiers in Big Data. 2023;6:1120989. doi: 10.3389/fdata.2023.1120989

[10]

Fanni SC, Marcucci A, Volpi F, et al. Artificial Intelligence-Based Software with CE Mark for Chest X-ray Interpretation: Opportunities and Challenges. Diagnostics (Basel). 2023;13(12):2020. doi: 10.3390/diagnostics13122020

[11]

Fanni S.C., Marcucci A., Volpi F., et al. Artificial Intelligence-Based Software with CE Mark for Chest X-ray Interpretation: Opportunities and Challenges // Diagnostics (Basel). 2023. Vol. 13, N 12. P. 2020. doi: 10.3390/diagnostics13122020

[12]

Fanni SC, Marcucci A, Volpi F, et al. Artificial Intelligence-Based Software with CE Mark for Chest X-ray Interpretation: Opportunities and Challenges. Diagnostics (Basel). 2023;13(12):2020. doi: 10.3390/diagnostics13122020

[13]

Gusev AV, Vladzymyrskyy AV, Sharova DE, et al. Evolution of research and development in the field of artificial intelligence technologies for healthcare in the Russian Federation: results of 2021. Digital Diagnostics. 2022;3(3):178–194. doi: 10.17816/DD107367

[14]

Гусев А.В., Владзимирский А.В., Шарова Д.Е., и др. Развитие исследований и разработок в сфере технологий искусственного интеллекта для здравоохранения в Российской Федерации: итоги 2021 года // Digital Diagnostics. 2022. Т. 3, № 3. С. 178–194. doi: 10.17816/DD107367

[15]

Gusev AV, Vladzymyrskyy AV, Sharova DE, et al. Evolution of research and development in the field of artificial intelligence technologies for healthcare in the Russian Federation: results of 2021. Digital Diagnostics. 2022;3(3):178–194. doi: 10.17816/DD107367

[16]

Kim J, Kim KH. Role of chest radiographs in early lung cancer detection. Translational Lung Cancer Research. 2020;9(3):522–531. doi: 10.21037/tlcr.2020.04.02

[17]

Kim J., Kim K.H. Role of chest radiographs in early lung cancer detection // Translational Lung Cancer Research. 2020. Vol. 9, N 3. P. 522–531. doi: 10.21037/tlcr.2020.04.02

[18]

Kim J, Kim KH. Role of chest radiographs in early lung cancer detection. Translational Lung Cancer Research. 2020;9(3):522–531. doi: 10.21037/tlcr.2020.04.02

[19]

Golubev NA, Ogryzko EV, Tyurina EM, et al. Features of the development of the radiology diagnostic service in the Russian Federation for 2014-2019. Current problems of health care and medical statistics. 2021;(2):356–376. doi: 10.24412/2312-2935-2021-2-356-376

[20]

Голубев Н.А., Огрызко Е.В., Тюрина Е.М., и др. Особенности развития службы лучевой диагностики в Российской Федерации за 2014-2019 года // Современные проблемы здравоохранения и медицинской статистики. 2021. № 2. С. 356–376. doi: 10.24412/2312-2935-2021-2-356-376

[21]

Golubev NA, Ogryzko EV, Tyurina EM, et al. Features of the development of the radiology diagnostic service in the Russian Federation for 2014-2019. Current problems of health care and medical statistics. 2021;(2):356–376. doi: 10.24412/2312-2935-2021-2-356-376

[22]

Wu JT, Wong KCL, Gur Y, et al. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents. JAMA Network Open. 2020;3(10):e2022779. doi: 10.1001/jamanetworkopen.2020.22779

[23]

Wu J.T., Wong K.C.L., Gur Y., et al. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents // JAMA Network Open. 2020. Vol. 3, N 10. P. e2022779. doi: 10.1001/jamanetworkopen.2020.22779

[24]

Wu JT, Wong KCL, Gur Y, et al. Comparison of Chest Radiograph Interpretations by Artificial Intelligence Algorithm vs Radiology Residents. JAMA Network Open. 2020;3(10):e2022779. doi: 10.1001/jamanetworkopen.2020.22779

[25]

Miró Catalina Q, Fuster-Casanovas A, Solé-Casals J, Vidal-Alaball J. Developing an Artificial Intelligence Model for Reading Chest X-rays: Protocol for a Prospective Validation Study. JMIR Research Protocols. 2022;11(11):e39536. doi: 10.2196/39536

[26]

Miró Catalina Q., Fuster-Casanovas A., Solé-Casals J., Vidal-Alaball J. Developing an Artificial Intelligence Model for Reading Chest X-rays: Protocol for a Prospective Validation Study // JMIR Research Protocols. 2022. Vol. 11, N 11. P. e39536. doi: 10.2196/39536

[27]

Miró Catalina Q, Fuster-Casanovas A, Solé-Casals J, Vidal-Alaball J. Developing an Artificial Intelligence Model for Reading Chest X-rays: Protocol for a Prospective Validation Study. JMIR Research Protocols. 2022;11(11):e39536. doi: 10.2196/39536

[28]

Plesner LL, Müller FC, Nybing JD, et al. Autonomous Chest Radiograph Reporting Using AI: Estimation of Clinical Impact. Radiology. 2023;307(3):e222268. doi: 10.1148/radiol.222268

[29]

Plesner L.L., Müller F.C., Nybing J.D., et al. Autonomous Chest Radiograph Reporting Using AI: Estimation of Clinical Impact // Radiology. 2023. Vol. 307, N 3. P. e222268. doi: 10.1148/radiol.222268

[30]

Plesner LL, Müller FC, Nybing JD, et al. Autonomous Chest Radiograph Reporting Using AI: Estimation of Clinical Impact. Radiology. 2023;307(3):e222268. doi: 10.1148/radiol.222268

[31]

Vasilev Yu, Vladzymyrskyy A, Omelyanskaya O, et al. AI-Based CXR First Reading: Current Limitations to Ensure Practical Value. Diagnostics (Basel). 2023;13(8):1430. doi: 10.3390/diagnostics13081430

[32]

Vasilev Yu., Vladzymyrskyy A., Omelyanskaya O., et al. AI-Based CXR First Reading: Current Limitations to Ensure Practical Value // Diagnostics (Basel). 2023. Vol. 13, N 8. P. 1430. doi: 10.3390/diagnostics13081430

[33]

Vasilev Yu, Vladzymyrskyy A, Omelyanskaya O, et al. AI-Based CXR First Reading: Current Limitations to Ensure Practical Value. Diagnostics (Basel). 2023;13(8):1430. doi: 10.3390/diagnostics13081430

[34]

Driver CN, Bowles BS, Bartholmai BJ, Greenberg-Worisek AJ. Artificial Intelligence in Radiology: A Call for Thoughtful Application. Clinical and Translational Science. 2020;13(2):216–218. doi: 10.1111/cts.12704

[35]

Driver C.N., Bowles B.S., Bartholmai B.J., Greenberg-Worisek A.J. Artificial Intelligence in Radiology: A Call for Thoughtful Application // Clinical and Translational Science. 2020. Vol. 13, N 2. P. 216–218. doi: 10.1111/cts.12704

[36]

Driver CN, Bowles BS, Bartholmai BJ, Greenberg-Worisek AJ. Artificial Intelligence in Radiology: A Call for Thoughtful Application. Clinical and Translational Science. 2020;13(2):216–218. doi: 10.1111/cts.12704

[37]

Yoo H, Kim EY, Kim H, et al. Artificial intelligence-based identification of normal chest radiographs: a simulation study in a multicenter health screening cohort. Korean Journal of Radiology. 2022;23(10):1009–1018. doi: 10.3348/kjr.2022.0189

[38]

Yoo H., Kim E.Y., Kim H., et al. Artificial intelligence-based identification of normal chest radiographs: a simulation study in a multicenter health screening cohort // Korean Journal of Radiology. 2022. Vol. 23, N 10. P. 1009–1018. doi: 10.3348/kjr.2022.0189

[39]

Yoo H, Kim EY, Kim H, et al. Artificial intelligence-based identification of normal chest radiographs: a simulation study in a multicenter health screening cohort. Korean Journal of Radiology. 2022;23(10):1009–1018. doi: 10.3348/kjr.2022.0189

[40]

Suganuma N, Yoshida S, Takeuchi Y, et al. Artificial intelligence in quantitative chest imaging analysis for occupational lung disease. Seminars in Respiratory and Critical Care Medicine. 2023;44(3):362–369. doi: 10.1055/s-0043-1767760

[41]

Suganuma N., Yoshida S., Takeuchi Y., et al. Artificial intelligence in quantitative chest imaging analysis for occupational lung disease // Seminars in Respiratory and Critical Care Medicine. 2023. Vol. 44, N 3. P. 362–369. doi: 10.1055/s-0043-1767760

[42]

Suganuma N, Yoshida S, Takeuchi Y, et al. Artificial intelligence in quantitative chest imaging analysis for occupational lung disease. Seminars in Respiratory and Critical Care Medicine. 2023;44(3):362–369. doi: 10.1055/s-0043-1767760

[43]

Brown C, Nazeer R, Gibbs A, et al. Breaking Bias: The role of artificial intelligence in improving clinical decision-making. Cureus. 2023;15(3):e36415. doi: 10.7759/cureus.36415

[44]

Brown C., Nazeer R., Gibbs A., et al. Breaking Bias: The role of artificial intelligence in improving clinical decision-making // Cureus. 2023. Vol. 15, N 3. P. e36415. doi: 10.7759/cureus.36415

[45]

Brown C, Nazeer R, Gibbs A, et al. Breaking Bias: The role of artificial intelligence in improving clinical decision-making. Cureus. 2023;15(3):e36415. doi: 10.7759/cureus.36415

[46]

Kaviani P, Kalra MK, Digumarthy SR, et al. Frequency of missed findings on chest radiographs (CXRs) in an international, multicenter study: application of AI to reduce missed findings. Diagnostics (Basel). 2022;12(10):2382. doi: 10.3390/diagnostics12102382

[47]

Kaviani P., Kalra M.K., Digumarthy S.R., et al. Frequency of missed findings on chest radiographs (CXRs) in an international, multicenter study: application of AI to reduce missed findings // Diagnostics (Basel). 2022. Vol. 12, N 10. P. 2382. doi: 10.3390/diagnostics12102382

[48]

Kaviani P, Kalra MK, Digumarthy SR, et al. Frequency of missed findings on chest radiographs (CXRs) in an international, multicenter study: application of AI to reduce missed findings. Diagnostics (Basel). 2022;12(10):2382. doi: 10.3390/diagnostics12102382

[49]

de Groot PM, Carter BW, Abbott GF, Wu CC. Pitfalls in chest radiographic interpretation: blind spots. Seminars in Roentgenology. 2015;50(3):197–209. doi: 10.1053/j.ro.2015.01.008

[50]

de Groot P.M., Carter B.W., Abbott G.F., Wu C.C. Pitfalls in chest radiographic interpretation: blind spots // Seminars in Roentgenology. 2015. Vol. 50, N. 3. P. 197–209. doi: 10.1053/j.ro.2015.01.008

[51]

de Groot PM, Carter BW, Abbott GF, Wu CC. Pitfalls in chest radiographic interpretation: blind spots. Seminars in Roentgenology. 2015;50(3):197–209. doi: 10.1053/j.ro.2015.01.008

[52]

Gefter WB, Post BA, Hatabu H. Commonly missed findings on chest radiographs: causes and consequences. Chest. 2023;163(3):650–661. doi: 10.1016/j.chest.2022.10.039

[53]

Gefter W.B., Post B.A., Hatabu H. Commonly missed findings on chest radiographs: causes and consequences // Chest. 2023. Vol. 163, N 3. P. 650–661. doi: 10.1016/j.chest.2022.10.039

[54]

Gefter WB, Post BA, Hatabu H. Commonly missed findings on chest radiographs: causes and consequences. Chest. 2023;163(3):650–661. doi: 10.1016/j.chest.2022.10.039

[55]

Vasilev YuA, Vladzimirsky AV, editors. Komp’yuternoe zrenie v luchevoj diagnostike: pervyj etap Moskovskogo eksperimenta. Moscow: Izdatelskie resheniya; 2022. (In Russ.)

[56]

Компьютерное зрение в лучевой диагностике: первый этап Московского эксперимента / под ред. Ю.А. Васильева, А.В. Владзимирского. Москва: Издательские решения, 2022.

[57]

Vasilev YuA, Vladzimirsky AV, editors. Komp’yuternoe zrenie v luchevoj diagnostike: pervyj etap Moskovskogo eksperimenta. Moscow: Izdatelskie resheniya; 2022. (In Russ.)

[58]

Morozov SP, Burenchev DV, Vladzimirsky AV, et al. Principy i pravila opisanij rezul’tatov luchevyh issledovanij. The series “Best practices of radiation and instrumental diagnostics”. Issue 97. Moscow: State Budget-Funded Health Care Institution of the City of Moscow “Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department”; 2021. (In Russ.)

[59]

Морозов С.П., Буренчев Д.В., Владзимирский А.В, и др. Принципы и правила описаний результатов лучевых исследований. Серия «Лучшие практики лучевой и инструментальной диагностики». Вып. 97. Москва: Государственное бюджетное учреждение здравоохранения города Москвы «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы», 2021.

[60]

Morozov SP, Burenchev DV, Vladzimirsky AV, et al. Principy i pravila opisanij rezul’tatov luchevyh issledovanij. The series “Best practices of radiation and instrumental diagnostics”. Issue 97. Moscow: State Budget-Funded Health Care Institution of the City of Moscow “Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department”; 2021. (In Russ.)

[61]

Choi YR, Yoon SH, Kim J, et al. Chest Radiography of Tuberculosis: Determination of Activity Using Deep Learning Algorithm. Tuberculosis and Respiratory Diseases. 2023;86(3):226–233. doi: 10.4046/trd.2023.0020

[62]

Choi Y.R., Yoon S.H., Kim J., et al. Chest Radiography of Tuberculosis: Determination of Activity Using Deep Learning Algorithm // Tuberculosis and Respiratory Diseases. 2023. Vol. 86, N 3. P. 226–233. doi: 10.4046/trd.2023.0020

[63]

Choi YR, Yoon SH, Kim J, et al. Chest Radiography of Tuberculosis: Determination of Activity Using Deep Learning Algorithm. Tuberculosis and Respiratory Diseases. 2023;86(3):226–233. doi: 10.4046/trd.2023.0020

[64]

Sun Z, Zhou J, Zhao L. Application status and problems summary of artificial intelligence in chest imaging. Asian Journal of Surgery. 2023;46(10):4437–4438. doi: 10.1016/j.asjsur.2023.04.100

[65]

Sun Z., Zhou J., Zhao L. Application status and problems summary of artificial intelligence in chest imaging // Asian Journal of Surgery. 2023. Vol. 46, N 10. P. 4437–4438. doi: 10.1016/j.asjsur.2023.04.100

[66]

Sun Z, Zhou J, Zhao L. Application status and problems summary of artificial intelligence in chest imaging. Asian Journal of Surgery. 2023;46(10):4437–4438. doi: 10.1016/j.asjsur.2023.04.100

[67]

Bernstein MH, Atalay MK, Dibble EH, et al. Can incorrect artificial intelligence (AI) results impact radiologists, and if so, what can we do about it? A multi-reader pilot study of lung cancer detection with chest radiography. European Radiology. 2023;33(11):8263–8269. doi: 10.1007/s00330-023-09747-1

[68]

Bernstein M.H., Atalay M.K., Dibble E.H., et al. Can incorrect artificial intelligence (AI) results impact radiologists, and if so, what can we do about it? A multi-reader pilot study of lung cancer detection with chest radiography // European Radiology. 2023. Vol. 33, N 11. P. 8263–8269. doi: 10.1007/s00330-023-09747-1

[69]

Bernstein MH, Atalay MK, Dibble EH, et al. Can incorrect artificial intelligence (AI) results impact radiologists, and if so, what can we do about it? A multi-reader pilot study of lung cancer detection with chest radiography. European Radiology. 2023;33(11):8263–8269. doi: 10.1007/s00330-023-09747-1

[70]

Becker J, Decker JA, Römmele C, et al. Artificial Intelligence-based detection of pneumonia in chest radiographs. Diagnostics (Basel). 2022;12(6):1465. doi: 10.3390/diagnostics12061465

[71]

Becker J., Decker J.A., Römmele C., et al. Artificial Intelligence-based detection of pneumonia in chest radiographs // Diagnostics (Basel). 2022. Vol. 12, N 6. P. 1465. doi: 10.3390/diagnostics12061465

[72]

Becker J, Decker JA, Römmele C, et al. Artificial Intelligence-based detection of pneumonia in chest radiographs. Diagnostics (Basel). 2022;12(6):1465. doi: 10.3390/diagnostics12061465

[73]

Dasegowda G, Bizzo BC, Gupta RV, et al. Radiologist-trained AI model for identifying suboptimal chest-radiographs. Academic Radiology. 2023;30(12):2921–2930. doi: 10.1016/j.acra.2023.03.006

[74]

Dasegowda G., Bizzo B.C., Gupta R.V., et al. Radiologist-trained AI model for identifying suboptimal chest-radiographs // Academic Radiology. 2023. Vol. 30, N 12. P. 2921–2930. doi: 10.1016/j.acra.2023.03.006

[75]

Dasegowda G, Bizzo BC, Gupta RV, et al. Radiologist-trained AI model for identifying suboptimal chest-radiographs. Academic Radiology. 2023;30(12):2921–2930. doi: 10.1016/j.acra.2023.03.006

[76]

Fanni SC, Greco G, Rossi S, et al. Role of artificial intelligence in oncologic emergencies: a narrative review. Exploration of Targeted Anti-tumor Therapy. 2023;4(2):344–354. doi: 10.37349/etat.2023.00138

[77]

Fanni S.C., Greco G., Rossi S., et al. Role of artificial intelligence in oncologic emergencies: a narrative review // Exploration of Targeted Anti-tumor Therapy. 2023. Vol. 4, N 2. P. 344–354. doi: 10.37349/etat.2023.00138

[78]

Fanni SC, Greco G, Rossi S, et al. Role of artificial intelligence in oncologic emergencies: a narrative review. Exploration of Targeted Anti-tumor Therapy. 2023;4(2):344–354. doi: 10.37349/etat.2023.00138

[79]

Hwang EJ, Goo JM, Nam JG, et al. Conventional versus artificial intelligence-assisted interpretation of chest radiographs in patients with acute respiratory symptoms in emergency department: a pragmatic randomized clinical trial. Korean Journal of Radiology. 2023;24(3):259–270. doi: 10.3348/kjr.2022.0651

[80]

Hwang E.J., Goo J.M., Nam J.G., et al. Conventional versus artificial intelligence-assisted interpretation of chest radiographs in patients with acute respiratory symptoms in emergency department: a pragmatic randomized clinical trial // Korean Journal of Radiology. 2023. Vol. 24, N 3. P. 259–270. doi: 10.3348/kjr.2022.0651

[81]

Hwang EJ, Goo JM, Nam JG, et al. Conventional versus artificial intelligence-assisted interpretation of chest radiographs in patients with acute respiratory symptoms in emergency department: a pragmatic randomized clinical trial. Korean Journal of Radiology. 2023;24(3):259–270. doi: 10.3348/kjr.2022.0651

[82]

Tan H, Xu H, Yu N, et al. The value of deep learning-based computer aided diagnostic system in improving diagnostic performance of rib fractures in acute blunt trauma. BMC Medical Imaging. 2023;23(1):55. doi: 10.1186/s12880-023-01012-7

[83]

Tan H., Xu H., Yu N., et al. The value of deep learning-based computer aided diagnostic system in improving diagnostic performance of rib fractures in acute blunt trauma // BMC Medical Imaging. 2023. Vol. 23, N 1. P. 55. doi: 10.1186/s12880-023-01012-7

[84]

Tan H, Xu H, Yu N, et al. The value of deep learning-based computer aided diagnostic system in improving diagnostic performance of rib fractures in acute blunt trauma. BMC Medical Imaging. 2023;23(1):55. doi: 10.1186/s12880-023-01012-7

[85]

Wu J, Liu N, Li X, et al. Convolutional neural network for detecting rib fractures on chest radiographs: a feasibility study. BMC Medical Imaging. 2023;23(1):18. doi: 10.1186/s12880-023-00975-x

[86]

Wu J., Liu N., Li X., et al. Convolutional neural network for detecting rib fractures on chest radiographs: a feasibility study // BMC Medical Imaging. 2023. Vol. 23, N 1. P. 18. doi: 10.1186/s12880-023-00975-x

[87]

Wu J, Liu N, Li X, et al. Convolutional neural network for detecting rib fractures on chest radiographs: a feasibility study. BMC Medical Imaging. 2023;23(1):18. doi: 10.1186/s12880-023-00975-x

[88]

Lee HW, Jin KN, Oh S, et al. Artificial intelligence solution for chest radiographs in respiratory outpatient clinics: multicenter prospective randomized clinical trial. Annals of the American Thoracic Society. 2023;20(5):660–667. doi: 10.1513/AnnalsATS.202206-481OC

[89]

Lee H.W., Jin K.N., Oh S., et al. Artificial intelligence solution for chest radiographs in respiratory outpatient clinics: multicenter prospective randomized clinical trial // Annals of the American Thoracic Society. 2023. Vol. 20, N 5. P. 660–667. doi: 10.1513/AnnalsATS.202206-481OC

[90]

Lee HW, Jin KN, Oh S, et al. Artificial intelligence solution for chest radiographs in respiratory outpatient clinics: multicenter prospective randomized clinical trial. Annals of the American Thoracic Society. 2023;20(5):660–667. doi: 10.1513/AnnalsATS.202206-481OC

[91]

Hillis JM, Bizzo BC, Mercaldo S, et al. Evaluation of an artificial intelligence model for detection of pneumothorax and tension pneumothorax in chest radiographs. JAMA Network Open. 2022;5(12):e2247172. doi: 10.1001/jamanetworkopen.2022.47172

[92]

Hillis J.M., Bizzo B.C., Mercaldo S., et al. Evaluation of an artificial intelligence model for detection of pneumothorax and tension pneumothorax in chest radiographs // JAMA Network Open. 2022. Vol. 5, N 12. P. e2247172. doi: 10.1001/jamanetworkopen.2022.47172

[93]

Hillis JM, Bizzo BC, Mercaldo S, et al. Evaluation of an artificial intelligence model for detection of pneumothorax and tension pneumothorax in chest radiographs. JAMA Network Open. 2022;5(12):e2247172. doi: 10.1001/jamanetworkopen.2022.47172

Funding

Департамент здравоохранения города МосквыMoscow Health Care DepartmentMoscow Health Care Department(123031400006-0)

RIGHTS & PERMISSIONS

Eco-Vector

PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

/