Evaluating the performance of artificial intelligence based software for digital mammography characterization

Yuriy A. Vasilev , Alexander V. Kolsanov , Kirill M. Arzamasov , Anton V. Vladzymyrskyy , Olga V. Omelyanskaya , Serafim S. Semenov , Lubov E. Axenova

Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (4) : 695 -711.

PDF (952KB)
Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (4) : 695 -711. DOI: 10.17816/DD625967
Original Study Articles
research-article

Evaluating the performance of artificial intelligence based software for digital mammography characterization

Author information +
History +
PDF (952KB)

Abstract

BACKGROUND: Digital screening mammography is a key modality for early detection of breast cancer, reducing mortality by 20–40%. Many artificial intelligence (AI)-based services have been developed to automate the analysis of imaging data.

AIM: The aim of the study was to compare mammography assessments using three types of AI services in multiple versions with radiologists’ conclusions.

MATERIALS AND METHODS: Binary mammography scoring scales were compared with several types and versions of AI services regarding diagnostic accuracy, Matthews correlation coefficient, and maximum Youden’s index.

RESULTS: A comparative analysis showed that the use of a binary scale for evaluating digital mammography affects the number of detected abnormalities and accuracy of AI results. In addition, diagnostic accuracy was found to be threshold dependent. AI Service 1 in version 3 had the best performance, as confirmed by most diagnostic accuracy parameters.

CONCLUSIONS: Our results can be used to select AI services for interpreting mammography screening data. Using Youden’s index maximization to set up an AI service provides a balance of sensitivity and specificity that is not always clinically relevant.

Keywords

malignant tumors of breast / digital mammography / artificial intelligence services / diagnostic accuracy / Youden’s index

Cite this article

Download citation ▾
Yuriy A. Vasilev, Alexander V. Kolsanov, Kirill M. Arzamasov, Anton V. Vladzymyrskyy, Olga V. Omelyanskaya, Serafim S. Semenov, Lubov E. Axenova. Evaluating the performance of artificial intelligence based software for digital mammography characterization. Digital Diagnostics, 2024, 5(4): 695-711 DOI:10.17816/DD625967

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Seely JM, Alhassan T. Screening for breast cancer in 2018-what should we be doing today? Curr Oncol. 2018;25(suppl 1):S115–S124. doi: 10.3747/co.25.3770

[2]

Seely J.M., Alhassan T. Screening for breast cancer in 2018-what should we be doing today? // Curr Oncol. 2018. Vol. 25, Suppl. 1. P. S115–S124. doi: 10.3747/co.25.3770

[3]

Artificial intelligence in mammography screening. Clinical applications, issues and directions for development [Internet; cited 20 August 2023]. Available from: https://www.itmportal.ru/upload/iblock/69e/7q981uhfaxjhcntal0exngxtq43xeth2/2.2.3. Kandoba ITM_AI-2022.pdf (in Russ.)

[4]

Кандоба В.И. Искусственный интеллект в скрининговой маммографии. Клиническое использование, проблемы и направления развития [интернет]. Режим доступа: https://www.itmportal.ru/upload/iblock/69e/7q981uhfaxjhcntal0exngxtq43xeth2/2.2.3. Kandoba ITM_AI-2022.pdf Дата обращения: 20.08.2023

[5]

Celsus — AI-software for analysis of X-ray and CT studies. Mammography [Internet; cited 20 Aug 2023]. Available from: https://celsus.ai/productsmammography/

[6]

Цельс. Система поддержки принятия врачебных решений на базе технологий искусственного интеллекта для анализа цифровых медицинских изображений. Маммография [интернет]. Режим доступа: https://celsus.ai/products mammography/ Дата обращения: 20.08.2023

[7]

Kim HE, Kim HH, Han BK, et al. Changes in cancer detection and false positive recall in mammography using artificial intelligence: a retrospective, multireader study. Lancet Digit Health. 2020;2(3):e138–e148. doi: 10.1016/S2589-7500(20)30003-0

[8]

Kim H.E., Kim H.H., Han B.K., et al. Changes in cancer detection and false positive recall in mammography using artificial intelligence: a retrospective, multireader study // Lancet Digit Health. 2020. Vol. 2, N 3. P. e138–e148. doi: 10.1016/S2589-7500(20)30003-0

[9]

Yoon JH, Strand F, Baltzer PAT, et al. Standalone AI for Breast Cancer Detection at Screening Digital Mammography and Digital Breast Tomosynthesis: A Systematic Review and Meta Analysis. Radiology. 2023;307(5):e222639. doi: 10.1148/radiol.222639

[10]

Yoon J.H., Strand F., Baltzer P.A.T., et al. Standalone AI for Breast Cancer Detection at Screening Digital Mammography and Digital Breast Tomosynthesis: A Systematic Review and Meta Analysis // Radiology. 2023. Vol. 307, N 5. ID: e222639. doi: 10.1148/radiol.222639

[11]

Zhou X H, Obuchowski NA, McClish DK. Statistical Methods in Diagnostic Medicine. NJ: John Wiley & Sons, Inc.; 2011. doi: 10.1002/9780470906514

[12]

Zhou X. H., Obuchowski N.A., McClish D.K. Statistical Methods in Diagnostic Medicine. NJ: John Wiley & Sons, Inc.; 2011. doi: 10.1002/9780470906514

[13]

Habibzadeh F, Habibzadeh P, Yadollahie M. On determining the most appropriate test cut off value: the case of tests with continuous results. Biochem Med (Zagreb). 2016;26(3):297–307. doi: 10.11613/BM.2016.034

[14]

Habibzadeh F., Habibzadeh P, Yadollahie M. On determining the most appropriate test cut off value: the case of tests with continuous results // Biochem Med (Zagreb). 2016. Vol. 26, N 3. P. 297–307. doi: 10.11613/BM.2016.034

[15]

Schaffter T, Buist DSM, Lee CI, et al. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Netw Open. 2020;3(3):e200265. doi: 10.1001/jamanetworkopen.2020.0265

[16]

Schaffter T., Buist D.S.M., Lee C.I., et al. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms // JAMA Netw Open. 2020. Vol. 3, N 3. ID: e200265. doi: 10.1001/jamanetworkopen.2020.0265

[17]

McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89–94. doi: 10.1038/s41586-019-1799-6

[18]

McKinney S.M., Sieniek M., Godbole V., et al. International evaluation of an AI system for breast cancer screening // Nature. 2020. Vol. 577, N 7788. P. 89–94. doi: 10.1038/s41586-019-1799-6

[19]

Nam JG, Kim M, Park J, et al. Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs. Eur Respir J. 2021;57(5):2003061. doi: 10.1183/13993003.03061-2020

[20]

Nam J.G., Kim M., Park J., et al. Development and validation of a deep learning algorithm detecting 10 common abnormalities on chest radiographs // Eur Respir J. 2021. Vol. 57, N 5. ID: 2003061. doi: 10.1183/13993003.03061-2020

[21]

Sakhnov SN, Axenov KD, Axenova LE, et al. Development of a cataract screening model using an open dataset and deep machine learning algorithms. Fyodorov Journal of Ophthalmic Surgery. 2022;(S4):13–20. EDN: VEGPAW doi: 10.25276/0235-4160-2022-4S-13-20

[22]

Сахнов С.Н., Аксенов К.Д., Аксенова Л.Е., и др. Разработка модели скрининга катаракты с использованием открытого набора данных и алгоритмов глубокого машинного обучения. Офтальмохирургия. 2022. № S4. С. 13–20. EDN: VEGPAW doi: 10.25276/0235-4160-2022-4S-13-20

[23]

King G, Zeng L. Logistic Regression in Rare Events Data. Political Analysis. 2001;9(2):137–163. doi: 10.1093/oxfordjournals.pan.a004868

[24]

King G., Zeng L. Logistic Regression in Rare Events Data // Political Analysis. 2001. Vol. 9, N 2. P. 137–163. doi: 10.1093/oxfordjournals.pan.a004868

[25]

Chen F, Xue Y, Tan MT, Chen P. Efficient statistical tests to compare Youden index: accounting for contingency correlation. Stat Med. 2015;34(9):1560–1576. doi: 10.1002/sim.6432

[26]

Chen F., Xue Y., Tan M.T., Chen P. Efficient statistical tests to compare Youden index: accounting for contingency correlation // Stat Med. 2015. Vol. 34, N 9. P. 1560–1576. doi: 10.1002/sim.6432

[27]

Vasiliev YuA, Vladzimirsky AV, Sharova DE, et al. Clinical trials of artificial intelligence systems (radiation diagnostics). Moscow: State budgetary healthcare institution of the city of Moscow «Scientific and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Department». 2023. 40 p. (In Russ.) EDN: PUIJLD

[28]

Васильев Ю.А., Владзимирский А.В., Шарова Д.Е., и др. Клинические испытания систем искусственного интеллекта (лучевая диагностика). Москва: Государственное бюджетное учреждение здравоохранения города Москвы «Научно-практический клинический центр диагностики и телемедицинских технологий Департамента здравоохранения города Москвы», 2023. 40 с. EDN: PUIJLD

[29]

Arzamasov KM, Vasilev YuA, Vladzymyrskyy AV, et al. The use of computer vision for the mammography preventive research. The Russian Journal of Preventive Medicine. 2023;26(6):117–123. EDN: YBKHPS doi: 10.17116/profmed202326061117

[30]

Арзамасов К.М., Васильев Ю.А., Владзимирский А.В., и др. Применение компьютерного зрения для профилактических исследований на примере маммографии // Профилактическая медицина. 2023. Т. 26, № 6. С. 117–123. EDN: YBKHPS doi: 10.17116/profmed202326061117

[31]

Vasilev YuA, Tyrov IA, Vladzymyrskyy AV, et al. Double reading mammograms using artificial intelligence technologies: A new model of mass preventive examination organization. Digital Diagnostics. 2023;4(2):93–104. EDN: VRIEOH doi: 10.17816/DD321423

[32]

Васильев Ю.А., Тыров И.А., Владзимирский А.В., и др. Двойной просмотр результатов маммографии с применением технологий искусственного интеллекта: новая модель организации массовых профилактических исследований // Digital Diagnostics. 2023. Т. 4, № 2. С. 93–104. EDN: VRIEOH doi: 10.17816/DD321423

[33]

Vasilev YuA, Tyrov IA, Vladzymyrskyy AV, et al. A New Model of Organizing Mass Screening Based on Stand Alone Artificial Intelligence Used for Fluorography Image Triage. Public Health and Life Environment — PH&LE. 2023;31(11):23-32. EDN: SYIQBX doi: 10.35627/2219-5238/2023-31-11-23-32

[34]

Васильев Ю.А., Тыров И.А., Владзимирский А.В., и др. Новая модель организации массовых профилактических исследований, основанная на автономном искусственном интеллекте для сортировки результатов флюорографии // Здоровье населения и среда обитания — ЗНиСО. 2023. Т. 31, № 11. С. 23–32. EDN: SYIQBX doi: 10.35627/2219-5238/2023-31-11-23-32

[35]

Vladzimirskyy AV, Vasilev YuA, Arzamasov KM, et al. Computer vision in radiology: the first stage of the Moscow experiment. Moscow: Izdatel’skie resheniya; 2022. (In Russ.) EDN: FOYLXK

[36]

Владзимирский А.В., Васильев Ю.А., Арзамасов К.М., и др. Компьютерное зрение в лучевой диагностике: первый этап Московского эксперимента. Москва: Издательские решения, 2022. EDN: FOYLXK

Funding

Moscow City Health DepartmentДепартамент здравоохранения города МосквыMoscow City Health Department(123031500004-5)

RIGHTS & PERMISSIONS

Eco-Vector

AI Summary AI Mindmap
PDF (952KB)

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/