Machine learning techniques for breast cancer diagnosis

Kirill S. Dyomin , Ilya V. Germashev

Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (3) : 578 -591.

PDF
Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (3) :578 -591. DOI: 10.17816/DD625866
Reviews
review-article

Machine learning techniques for breast cancer diagnosis

Author information +
History +
PDF

Abstract

In the last few years, machine learning techniques have been attracting even greater attention in the field of diagnostics, particularly when detecting breast cancer. Relevant studies dedicated to machine learning techniques in breast cancer diagnosis were analyzed in three areas: solving secondary problems that occur in modern-day breast cancer diagnostics, role in an intelligent assessment of the patient’s condition for preliminary diagnostic decisions, and capability to detect breast cancer risk factors. The results revealed that machine learning techniques applied in breast cancer diagnosis have great potential for improving diagnostic accuracy and efficiency and solving secondary problems. The medical literature analysis has determined the parameters that are used as input data in machine learning techniques. Furthermore, the collected information will be applied to create a parameter system for breast cancer diagnosis using machine learning techniques.

Keywords

breast cancer / cancer screening / machine learning / artificial intelligence

Cite this article

Download citation ▾
Kirill S. Dyomin, Ilya V. Germashev. Machine learning techniques for breast cancer diagnosis. Digital Diagnostics, 2024, 5(3): 578-591 DOI:10.17816/DD625866

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kaprin AD, Starinsky VV, Shakhzadova AO, editors. Sostoyanie onkologicheskoj pomoshchi naseleniyu Rossii v 2022 godu. Moscow: P.A. Herzen Institute of Medical Sciences − branch of the Federal State Budgetary Institution “NMIC of Radiology” of the Ministry of Health of the Russian Federation; 2023. (In Russ.)

[2]

Состояние онкологической помощи населению России в 2022 году / под ред. Каприна А.Д., Старинского В.В., Шахзадовой А.О. Москва : МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2023.

[3]

Kaprin AD, Starinsky VV, Shakhzadova AO, editors. Sostoyanie onkologicheskoj pomoshchi naseleniyu Rossii v 2022 godu. Moscow: P.A. Herzen Institute of Medical Sciences − branch of the Federal State Budgetary Institution “NMIC of Radiology” of the Ministry of Health of the Russian Federation; 2023. (In Russ.)

[4]

Zou S, Lin Y, Yu X, et al. Genetic and lifestyle factors for breast cancer risk assessment in Southeast China. Cancer Medicine. 2023;12(14):15504–15514. doi: 10.1002/cam4.6198

[5]

Zou S., Lin Y., Yu X., et al. Genetic and lifestyle factors for breast cancer risk assessment in Southeast China // Cancer Medicine. 2023. Vol. 12, N 14. P. 15504–15514. doi: 10.1002/cam4.6198

[6]

Zou S, Lin Y, Yu X, et al. Genetic and lifestyle factors for breast cancer risk assessment in Southeast China. Cancer Medicine. 2023;12(14):15504–15514. doi: 10.1002/cam4.6198

[7]

Raza SK, Sarwar SS, Syed SM, Khan NA. Classification and Segmentation of Breast Tumor Using Mask R- CNN on Mammograms. Research Square. 2021. doi: 10.21203/rs.3.rs-523546/v1

[8]

Raza S.K., Sarwar S.S., Syed S.M., Khan N.A. Classification and Segmentation of Breast Tumor Using Mask R- CNN on Mammograms // Research Square. 2021. doi: 10.21203/rs.3.rs-523546/v1

[9]

Raza SK, Sarwar SS, Syed SM, Khan NA. Classification and Segmentation of Breast Tumor Using Mask R- CNN on Mammograms. Research Square. 2021. doi: 10.21203/rs.3.rs-523546/v1

[10]

Khan AA, Arora AS. Thermography as an Economical Alternative Modality to Mammography for Early Detection of Breast Cancer. Journal of Healthcare Engineering. 2021:5543101. doi: 10.1155/2021/5543101

[11]

Khan A.A., Arora A.S. Thermography as an Economical Alternative Modality to Mammography for Early Detection of Breast Cancer // Journal of Healthcare Engineering. 2021. P. 5543101. doi: 10.1155/2021/5543101

[12]

Khan AA, Arora AS. Thermography as an Economical Alternative Modality to Mammography for Early Detection of Breast Cancer. Journal of Healthcare Engineering. 2021:5543101. doi: 10.1155/2021/5543101

[13]

Ko C, Toh C, Brody JP. Genetic risk scores for breast cancer based on machine learning analysis of chromosomal-scale length variation. Clinical Cancer Research. 2021;27 Suppl. 5:PR-09. doi: 10.1158/1557-3265.ADI21-PR-09

[14]

Ko C., Toh C., Brody J.P. Genetic risk scores for breast cancer based on machine learning analysis of chromosomal-scale length variation // Clinical Cancer Research. 2021. Vol. 27, Suppl. 5. P. PR-09. doi: 10.1158/1557-3265.ADI21-PR-09

[15]

Ko C, Toh C, Brody JP. Genetic risk scores for breast cancer based on machine learning analysis of chromosomal-scale length variation. Clinical Cancer Research. 2021;27 Suppl. 5:PR-09. doi: 10.1158/1557-3265.ADI21-PR-09

[16]

Yagin B, Yagin FH, Colak C, et al. Cancer Metastasis Prediction and Genomic Biomarker Identification through Machine Learning and eXplainable Artificial Intelligence in Breast Cancer Research. Diagnostics (Basel). 2023;13(21):3314. doi: 10.3390/diagnostics13213314

[17]

Yagin B., Yagin F.H., Colak C., et al. Cancer Metastasis Prediction and Genomic Biomarker Identification through Machine Learning and eXplainable Artificial Intelligence in Breast Cancer Research // Diagnostics (Basel). 2023. Vol. 13, N 21. P. 3314. doi: 10.3390/diagnostics13213314

[18]

Yagin B, Yagin FH, Colak C, et al. Cancer Metastasis Prediction and Genomic Biomarker Identification through Machine Learning and eXplainable Artificial Intelligence in Breast Cancer Research. Diagnostics (Basel). 2023;13(21):3314. doi: 10.3390/diagnostics13213314

[19]

O’Leary TJ, Mikel UV, Becker RL. Computer-assisted image interpretation: use of a neural network to differentiate tubular carcinoma from sclerosing adenosis. Modern Pathology. 1992;5(4):402–405.

[20]

O’Leary T.J., Mikel U.V., Becker R.L. Computer-assisted image interpretation: use of a neural network to differentiate tubular carcinoma from sclerosing adenosis // Modern Pathology. 1992. Vol. 5, N 4. P. 402–405.

[21]

O’Leary TJ, Mikel UV, Becker RL. Computer-assisted image interpretation: use of a neural network to differentiate tubular carcinoma from sclerosing adenosis. Modern Pathology. 1992;5(4):402–405.

[22]

Tsochatzidis L, Costaridou L, Pratikakis I. Deep Learning for Breast Cancer Diagnosis from Mammograms – A Comparative Study. Journal of Imaging. 2019;5(3):37. doi: 10.3390/jimaging5030037

[23]

Tsochatzidis L., Costaridou L., Pratikakis I. Deep Learning for Breast Cancer Diagnosis from Mammograms – A Comparative Study // Journal of Imaging. 2019. Vol. 5, N 3. P. 37. doi: 10.3390/jimaging5030037

[24]

Tsochatzidis L, Costaridou L, Pratikakis I. Deep Learning for Breast Cancer Diagnosis from Mammograms – A Comparative Study. Journal of Imaging. 2019;5(3):37. doi: 10.3390/jimaging5030037

[25]

Hamad YA, Simonov K, Naeem MB. Breast Cancer Detection and Classification Using Artificial Neural Networks. In: 1st Annual International Conference on Information and Sciences (AiCIS); Nov 20–21, 2018; Fallujah. P. 51–57. doi: 10.1109/aicis.2018.00022

[26]

Hamad Y.A., Simonov K., Naeem M.B. Breast Cancer Detection and Classification Using Artificial Neural Networks. In: 1st Annual International Conference on Information and Sciences (AiCIS); Nov 20–21, 2018; Fallujah. P. 51–57. doi: 10.1109/aicis.2018.00022

[27]

Hamad YA, Simonov K, Naeem MB. Breast Cancer Detection and Classification Using Artificial Neural Networks. In: 1st Annual International Conference on Information and Sciences (AiCIS); Nov 20–21, 2018; Fallujah. P. 51–57. doi: 10.1109/aicis.2018.00022

[28]

Ruchai AN, Kober VI, Dorofeev KA, et al. Classification of breast pathologies using a deep convolutional neural network and transfer learning. Information processes. 2020;20(4):357–365.

[29]

Ручай А.Н., Кобер В.И., Дорофеев К.А., и др. Классификация патологий молочной железы с использованием глубокой сверточной нейронной сети и трансферного обучения // Информационные процессы. 2020. Т. 20, № 4. С. 357–365.

[30]

Ruchai AN, Kober VI, Dorofeev KA, et al. Classification of breast pathologies using a deep convolutional neural network and transfer learning. Information processes. 2020;20(4):357–365.

[31]

Sasov DA, Zubkov AV, Orlova YuA, Tupitsyna AV. Classification of breast cancer using convolutional neural networks. Inženernyj vestnik Dona. 2023;6:730–741. (In Russ.)

[32]

Сасов Д.А., Зубков А.В., Орлова Ю.А., Турицына А.В. Классификация рака молочной железы с помощью сверточных нейронных сетей // Инженерный вестник Дона. 2023. № 6. С. 730–741.

[33]

Sasov DA, Zubkov AV, Orlova YuA, Tupitsyna AV. Classification of breast cancer using convolutional neural networks. Inženernyj vestnik Dona. 2023;6:730–741. (In Russ.)

[34]

Computational Intelligence and Neuroscience. Retracted: Value of Artificial Neural Network Ultrasound in Improving Breast Cancer Diagnosis. Computational Intelligence and Neuroscience. 2023:9872174. doi: 10.1155/2023/9872174

[35]

Computational Intelligence and Neuroscience. Retracted: Value of Artificial Neural Network Ultrasound in Improving Breast Cancer Diagnosis // Computational Intelligence and Neuroscience. 2023. P. 9872174. doi: 10.1155/2023/9872174

[36]

Computational Intelligence and Neuroscience. Retracted: Value of Artificial Neural Network Ultrasound in Improving Breast Cancer Diagnosis. Computational Intelligence and Neuroscience. 2023:9872174. doi: 10.1155/2023/9872174

[37]

Zhang L, Jia Z, Leng X, Ma F. Artificial Intelligence Algorithm-Based Ultrasound Image Segmentation Technology in the Diagnosis of Breast Cancer Axillary Lymph Node Metastasis. Journal of Healthcare Engineering. 2021:8830260. doi: 10.1155/2021/8830260

[38]

Zhang L., Jia Z., Leng X., Ma F. Artificial Intelligence Algorithm-Based Ultrasound Image Segmentation Technology in the Diagnosis of Breast Cancer Axillary Lymph Node Metastasis // Journal of Healthcare Engineering. 2021. P. 8830260. doi: 10.1155/2021/8830260

[39]

Zhang L, Jia Z, Leng X, Ma F. Artificial Intelligence Algorithm-Based Ultrasound Image Segmentation Technology in the Diagnosis of Breast Cancer Axillary Lymph Node Metastasis. Journal of Healthcare Engineering. 2021:8830260. doi: 10.1155/2021/8830260

[40]

Zheng X, Yao Z, Huang Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nature Communications. 2020;11(1):1236. doi: 10.1038/s41467-020-15027-z

[41]

Zheng X., Yao Z., Huang Y., et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer // Nature Communications. 2020. Vol. 11, N 1. P. 1236. doi: 10.1038/s41467-020-15027-z

[42]

Zheng X, Yao Z, Huang Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer. Nature Communications. 2020;11(1):1236. doi: 10.1038/s41467-020-15027-z

[43]

Mustafin CK. Sovremennaya diagnostika zabolevanij molochnyh zhelez. Glavnyj vrač Ûga Rossii. 2014;(2):20–23. (In Russ.)

[44]

Мустафин Ч.К. Современная диагностика заболеваний молочных желез // Главный врач Юга России. 2014. № 2. С. 20–23.

[45]

Mustafin CK. Sovremennaya diagnostika zabolevanij molochnyh zhelez. Glavnyj vrač Ûga Rossii. 2014;(2):20–23. (In Russ.)

[46]

Jochelson MS, Dershaw DD, Sung JS, et al. Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology. 2013;266(3):743–751. doi: 10.1148/radiol.12121084

[47]

Jochelson M.S., Dershaw D.D., Sung J.S., et al. Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma // Radiology. 2013. Vol. 266, N 3. P. 743–751. doi: 10.1148/radiol.12121084

[48]

Jochelson MS, Dershaw DD, Sung JS, et al. Bilateral contrast-enhanced dual-energy digital mammography: feasibility and comparison with conventional digital mammography and MR imaging in women with known breast carcinoma. Radiology. 2013;266(3):743–751. doi: 10.1148/radiol.12121084

[49]

Witowski J, Heacock L, Reig B, et al. Improving breast cancer diagnostics with deep learning for MRI. Science Translational Medicine. 2022;14(664):eabo4802. doi: 10.1126/scitranslmed.abo4802

[50]

Witowski J., Heacock L., Reig B., et al. Improving breast cancer diagnostics with deep learning for MRI // Science Translational Medicine. 2022. Vol. 14, N 664. P. eabo4802. doi: 10.1126/scitranslmed.abo4802

[51]

Witowski J, Heacock L, Reig B, et al. Improving breast cancer diagnostics with deep learning for MRI. Science Translational Medicine. 2022;14(664):eabo4802. doi: 10.1126/scitranslmed.abo4802

[52]

Yurttakal AH, Erbay H, İkizceli T, Karacavus S. Detection of breast cancer via deep convolution neural networks using MRI images. Multimedia Tools and Applications. 2020;79:15555–15573. doi:10.1007/s11042-019-7479-6

[53]

Yurttakal A.H., Erbay H., İkizceli T., Karacavus S. Detection of breast cancer via deep convolution neural networks using MRI images // Multimedia Tools and Applications. 2020. Vol. 79. P. 15555–15573. doi:10.1007/s11042-019-7479-6

[54]

Yurttakal AH, Erbay H, İkizceli T, Karacavus S. Detection of breast cancer via deep convolution neural networks using MRI images. Multimedia Tools and Applications. 2020;79:15555–15573. doi:10.1007/s11042-019-7479-6

[55]

Gourav Modanwal, Adithya Vellal, Maciej A. Mazurowski, Normalization of breast MRIs using cycle-consistent generative adversarial networks // Computer Methods and Programs in Biomedicine, Vol. 208, 2021. doi: 10.1016/j.cmpb.2021.106225

[56]

Modanwal G., Vellal A., Mazurowski M.A. Normalization of breast MRIs using cycle-consistent generative adversarial networks // Computer Methods and Programs in Biomedicine. 2021. Vol. 208. doi: 10.1016/j.cmpb.2021.106225

[57]

Gourav Modanwal, Adithya Vellal, Maciej A. Mazurowski, Normalization of breast MRIs using cycle-consistent generative adversarial networks // Computer Methods and Programs in Biomedicine, Vol. 208, 2021. doi: 10.1016/j.cmpb.2021.106225

[58]

Ceny na MRT. In: Like Doctor [Internet] [cited 2024 Jan 9]. Available from: https://like.doctor/ceny/diagnostika/mrt (In Russ).

[59]

Цены на МРТ. В: Лайк Доктор [Internet] Режим доступа: https://like.doctor/ceny/diagnostika/mrt Дата обращения: 09.01.2024.

[60]

Ceny na MRT. In: Like Doctor [Internet] [cited 2024 Jan 9]. Available from: https://like.doctor/ceny/diagnostika/mrt (In Russ).

[61]

Diagnosticheskij mikrovolnovyj radiotermometr RTM-01-RES. In: Mikrovolnovaya radiotermometriya v medicine [Internet] [cited 2024 Jan 9]. Available from: http://www.radiometry.ru/radiometry/mammology/ (In Russ).

[62]

Диагностический микроволновый радиотермометр РТМ-01-РЭС. В: Микроволновая радиотермометрия в медицине [Internet]. Режим доступа: http://www.radiometry.ru/radiometry/mammology/ Дата обращения: 09.01.2024.

[63]

Diagnosticheskij mikrovolnovyj radiotermometr RTM-01-RES. In: Mikrovolnovaya radiotermometriya v medicine [Internet] [cited 2024 Jan 9]. Available from: http://www.radiometry.ru/radiometry/mammology/ (In Russ).

[64]

Polyakov MV, Popov IE, Losev AG, Khoperskov AV. Application of computer simulation results and machine learning in analysis of microwave radiothermometry data. Mathematical Physics and Computer Simulation. 2021;24(2):27–37. doi: 10.15688/mpcm.jvolsu.2021.2.3

[65]

Polyakov M.V., Popov I.E., Losev A.G., Khoperskov A.V. Application of computer simulation results and machine learning in analysis of microwave radiothermometry data // Mathematical Physics and Computer Simulation. 2021. Vol. 24, N 2. P. 27–37. doi: 10.15688/mpcm.jvolsu.2021.2.3

[66]

Polyakov MV, Popov IE, Losev AG, Khoperskov AV. Application of computer simulation results and machine learning in analysis of microwave radiothermometry data. Mathematical Physics and Computer Simulation. 2021;24(2):27–37. doi: 10.15688/mpcm.jvolsu.2021.2.3

[67]

Germashev IV, Dubovskaya VI, Losev AG, Popov IE. Factor analysis of the effect of signs on the accuracy of breast cancer diagnosis according to microwave radiothermometry. Caspian Journal: Management and High Technologies. 2022;(1):139–148.

[68]

Гермашев И.В., Дубовская В.И., Лосев А.Г., Попов И.Е. Факторный анализ влияния признаков на точность диагностики рака молочной железы по данным микроволновой радиотермометрии // Прикаспийский журнал: управление и высокие технологии. 2022. № 1. С. 139–148.

[69]

Germashev IV, Dubovskaya VI, Losev AG, Popov IE. Factor analysis of the effect of signs on the accuracy of breast cancer diagnosis according to microwave radiothermometry. Caspian Journal: Management and High Technologies. 2022;(1):139–148.

[70]

Losev AG, Medvedev DA. The use of neural networks in the diagnosis of breast cancer according to microwave radiothermometry. Modern Science and Innovation. 2019;(4):22–28.

[71]

Лосев А.Г., Медведев Д.А., Применение нейронных сетей в диагностике рака молочной железы по данным микроволновой радиотермометрии // Современная наука и инновации. 2019. № 4. С. 22–28.

[72]

Losev AG, Medvedev DA. The use of neural networks in the diagnosis of breast cancer according to microwave radiothermometry. Modern Science and Innovation. 2019;(4):22–28.

[73]

Shusharin AG, Morozov VV, Polovinka MP. Medical thermal imaging – modern possibilities of the method. Modern problems of science and education. 2011:(4).

[74]

Шушарин А.Г., Морозов В.В., Половинка М.П. Медицинское тепловидение – современные возможности метода // Современные проблемы науки и образования. 2011. № 4.

[75]

Shusharin AG, Morozov VV, Polovinka MP. Medical thermal imaging – modern possibilities of the method. Modern problems of science and education. 2011:(4).

[76]

Titskaya AA, Chernov VI, Sinilkin IG, et al. Standartizirovannye metodiki radionuklidnoj diagnostiki. Mammoscintigrafiya. Moscow: NTC Amplitude; 2014. (In Russ.)

[77]

Тицкая А.А., Чернов В.И., Синилкин И.Г., и др. Стандартизованные методики радионуклидной диагностики. Маммосцинтиграфия. Москва : ООО «НТЦ Амплитуда», 2014.

[78]

Titskaya AA, Chernov VI, Sinilkin IG, et al. Standartizirovannye metodiki radionuklidnoj diagnostiki. Mammoscintigrafiya. Moscow: NTC Amplitude; 2014. (In Russ.)

[79]

Li J, Galazis C, Popov L, et al. Dynamic Weight Agnostic Neural Networks and Medical Microwave Radiometry (MWR) for Breast Cancer Diagnostics. Diagnostics (Basel). 2022;12(9):2037. doi: 10.3390/diagnostics12092037

[80]

Li J., Galazis C., Popov L., et al. Dynamic Weight Agnostic Neural Networks and Medical Microwave Radiometry (MWR) for Breast Cancer Diagnostics // Diagnostics (Basel). 2022. Vol. 12, N 9. P. 2037. doi: 10.3390/diagnostics12092037

[81]

Li J, Galazis C, Popov L, et al. Dynamic Weight Agnostic Neural Networks and Medical Microwave Radiometry (MWR) for Breast Cancer Diagnostics. Diagnostics (Basel). 2022;12(9):2037. doi: 10.3390/diagnostics12092037

[82]

Glazunov VA. Testing the algorithm of tumor localization in breast cancer based on the results of modeling temperature fields. // XXV Regional Conference of Young Researchers of the Volgograd region : Theses of reports, Volgograd, November 20 – 13, 2020 / Editorial board: A.E. Kalinina (ed.) [et al.]. Volgograd: Volgograd State University, 2021. P:343–347. (In Russ.) EDN: DJQDLK

[83]

Глазунов В.А. Тестирование алгоритма локализации опухоли при раке молочной железы на результатах моделирования температурных полей // XXV Региональная конференция молодых исследователей Волгоградской области : Тезисы докладов, Волгоград, 20 ноября – 13 2020 года / Редколлегия: А.Э. Калинина (отв. ред.) [и др.]. Волгоград: Волгоградский государственный университет, 2021. С. 343–347. EDN: DJQDLK

[84]

Glazunov VA. Testing the algorithm of tumor localization in breast cancer based on the results of modeling temperature fields. // XXV Regional Conference of Young Researchers of the Volgograd region : Theses of reports, Volgograd, November 20 – 13, 2020 / Editorial board: A.E. Kalinina (ed.) [et al.]. Volgograd: Volgograd State University, 2021. P:343–347. (In Russ.) EDN: DJQDLK

[85]

Zamechnik TV, Losev AG, Levshinsky VV. Results of optimization of diagnostic signs of breast cancer detected by microwave radiothermometry. Medical News of North Caucasus. 2019;14(1.1):48–52. doi: 10.14300/mnnc.2019.14047

[86]

Замечник Т.В., Лосев А.Г., Левшинский В.В. Результаты оптимизации диагностических признаков рака молочной железы, выявляемых методом микроволновой радиотермометрии // Медицинский вестник Северного Кавказа. 2019. Т. 14, № 1.1. С. 48–52. doi: 10.14300/mnnc.2019.14047

[87]

Zamechnik TV, Losev AG, Levshinsky VV. Results of optimization of diagnostic signs of breast cancer detected by microwave radiothermometry. Medical News of North Caucasus. 2019;14(1.1):48–52. doi: 10.14300/mnnc.2019.14047

[88]

Kakileti ST, Madhu HJ, Manjunath G, et al, Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics. Artificial Intelligence in Medicine. 2020;105:101854. doi: 10.1016/j.artmed.2020.101854

[89]

Kakileti S.T., Madhu H.J., Manjunath G., et al, Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics // Artificial Intelligence in Medicine. 2020. Vol. 105. P. 101854. doi: 10.1016/j.artmed.2020.101854

[90]

Kakileti ST, Madhu HJ, Manjunath G, et al, Personalized risk prediction for breast cancer pre-screening using artificial intelligence and thermal radiomics. Artificial Intelligence in Medicine. 2020;105:101854. doi: 10.1016/j.artmed.2020.101854

[91]

Mambou SJ, Maresova P, Krejcar O, et al. Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model. Sensors (Basel). 2018;18(9):2799. doi: 10.3390/s18092799

[92]

Mambou S.J., Maresova P., Krejcar O., et al. Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model // Sensors (Basel). 2018. Vol. 18, N 9. P. 2799. doi: 10.3390/s18092799

[93]

Mambou SJ, Maresova P, Krejcar O, et al. Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model. Sensors (Basel). 2018;18(9):2799. doi: 10.3390/s18092799

[94]

Makarova MV, Unitsina AV. Thermal imaging of mammary glands in the assessment of volumetric formations. Vestnik of Northern (Arctic) Federal University. Series “Humanitarian and Social Sciences”. 2013;(4):44–50.

[95]

Макарова М.В., Юницына А.В. Тепловизионное исследование молочных желез в оценке объемных образований // Вестник Северного (Арктического) федерального университета. Серия «Медико-биологические науки». 2013. № 4. С. 44–50.

[96]

Makarova MV, Unitsina AV. Thermal imaging of mammary glands in the assessment of volumetric formations. Vestnik of Northern (Arctic) Federal University. Series “Humanitarian and Social Sciences”. 2013;(4):44–50.

[97]

Hussein NAK, Al-Sarray B. Deep Learning and Machine Learning via a Genetic Algorithm to Classify Breast Cancer DNA Data. Iraqi Journal of Science. 2022;63(7):3153–3168. doi: 10.24996/ijs.2022.63.7.36

[98]

Hussein N.A.K., Al-Sarray B. Deep Learning and Machine Learning via a Genetic Algorithm to Classify Breast Cancer DNA Data // Iraqi Journal of Science. 2022. Vol. 63, N 7. P. 3153–3168. doi: 10.24996/ijs.2022.63.7.36

[99]

Hussein NAK, Al-Sarray B. Deep Learning and Machine Learning via a Genetic Algorithm to Classify Breast Cancer DNA Data. Iraqi Journal of Science. 2022;63(7):3153–3168. doi: 10.24996/ijs.2022.63.7.36

[100]

Magna AAR, Allende-Cid H, Taramasco C, et al. Application of Machine Learning and Word Embeddings in the Classification of Cancer Diagnosis Using Patient Anamnesis. IEEE Access. 2020;8:106198–106213. doi: 10.1109/ACCESS.2020.3000075

[101]

Magna A.A.R., Allende-Cid H., Taramasco C., et al. Application of Machine Learning and Word Embeddings in the Classification of Cancer Diagnosis Using Patient Anamnesis // IEEE Access. 2020. Vol. 8. P. 106198–106213. doi: 10.1109/ACCESS.2020.3000075

[102]

Magna AAR, Allende-Cid H, Taramasco C, et al. Application of Machine Learning and Word Embeddings in the Classification of Cancer Diagnosis Using Patient Anamnesis. IEEE Access. 2020;8:106198–106213. doi: 10.1109/ACCESS.2020.3000075

[103]

Mortazavi SAR, Tahmasebi S, Par-Saei H, Taleie A. Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens. Journal of Biomedical Physics and Engineering. 2022;12(6):637–644. doi: 10.31661/jbpe.v0i0.2105-1341

[104]

Mortazavi S.A.R., Tahmasebi S., Par-Saei H., Taleie A. Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens // Journal of Biomedical Physics and Engineering. 2022. Vol. 12, N 6. P. 637–644. doi: 10.31661/jbpe.v0i0.2105-1341

[105]

Mortazavi SAR, Tahmasebi S, Par-Saei H, Taleie A. Machine Learning Models for Predicting Breast Cancer Risk in Women Exposed to Blue Light from Digital Screens. Journal of Biomedical Physics and Engineering. 2022;12(6):637–644. doi: 10.31661/jbpe.v0i0.2105-1341

[106]

Mortazavi SAR. The Association of Screen Time and Female Breast Cancer – A Retrospective Case-Control Study [dissertation]. Shiraz: Shiraz University of Medical Sciences; 2021.

[107]

Mortazavi S.A.R. The Association of Screen Time and Female Breast Cancer – A Retrospective Case-Control Study: dissertation. Shiraz : Shiraz University of Medical Sciences, 2021.

[108]

Mortazavi SAR. The Association of Screen Time and Female Breast Cancer – A Retrospective Case-Control Study [dissertation]. Shiraz: Shiraz University of Medical Sciences; 2021.

[109]

Afrash MR, Bayani A, Shanbehzadeh M, et al. Developing the breast cancer risk prediction system using hybrid machine learning algorithms. Journal of Education and Health Promotion. 2022;11(1):272. doi: 10.4103/jehp.jehp_42_22

[110]

Afrash M.R., Bayani A., Shanbehzadeh M., et al. Developing the breast cancer risk prediction system using hybrid machine learning algorithms // Journal of Education and Health Promotion. 2022. Vol. 11, N 1. P. 272. doi: 10.4103/jehp.jehp_42_22

[111]

Afrash MR, Bayani A, Shanbehzadeh M, et al. Developing the breast cancer risk prediction system using hybrid machine learning algorithms. Journal of Education and Health Promotion. 2022;11(1):272. doi: 10.4103/jehp.jehp_42_22

RIGHTS & PERMISSIONS

Eco-Vector

PDF

396

Accesses

0

Citation

Detail

Sections
Recommended

/