A case report of a mild neurologic deficit with extensive poststroke damage to the subdominant brain hemisphere: analysis of data obtained from magnetic resonance tractography, functional magnetic resonance imaging, and electroencephalography

Ivan S. Gumin , Sergey A. Gulyaev , Mikhail M. Beregov , Vladimir G. Lelyuk

Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (3) : 601 -612.

PDF
Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (3) :601 -612. DOI: 10.17816/DD624967
Case reports
research-article

A case report of a mild neurologic deficit with extensive poststroke damage to the subdominant brain hemisphere: analysis of data obtained from magnetic resonance tractography, functional magnetic resonance imaging, and electroencephalography

Author information +
History +
PDF

Abstract

The severity of damage to different brain areas, including the cortex, can vary significantly in the associated neurologic deficit and reduction in the quality of life, often regardless of the lesion volume. The localization of the abnormalities plays a large part. Lesions of the dominant and subdominant hemispheres can differ greatly in both clinical features and effects on the patient’s quality of life. In this case report, a patient admitted for rehabilitation after two ischemic strokes underwent neurological and neuropsychological examination, complex instrumental diagnostics using electroencephalography, magnetic resonance imaging, computed tomography perfusion, magnetic resonance tractography, and functional magnetic resonance imaging. The patient had minimal left-sided hemiparesis, impaired regulation of voluntary activity, mild decrease in neurodynamic indicators, mildly impaired concentration, and a critical view of his condition. Neuroimaging findings demonstrated extensive postinfarction damage to the right subdominant hemisphere of the brain in the middle cerebral artery circulation. A nonconformity between the brain damage volume and the severity of its clinical signs was observed. Based on functional examination data, the dominant hemisphere was determined, and restructuring the functional centers was suggested. This clinical case was compared with similar ones, and their relationship with the data was analyzed. Information that expands the knowledge of the topography of the altered zones involved in motor and speech functions and the ability to perform arithmetic counting was obtained.

Keywords

infarction / stroke / tractography / electroencephalography with functional tests / functional magnetic resonance imaging / neuroplasticity / subdominant

Cite this article

Download citation ▾
Ivan S. Gumin, Sergey A. Gulyaev, Mikhail M. Beregov, Vladimir G. Lelyuk. A case report of a mild neurologic deficit with extensive poststroke damage to the subdominant brain hemisphere: analysis of data obtained from magnetic resonance tractography, functional magnetic resonance imaging, and electroencephalography. Digital Diagnostics, 2024, 5(3): 601-612 DOI:10.17816/DD624967

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Global Health Estimates 2016: Deaths by cause, age, sex, by country and by region, 2000-2016 [Internet]. Geneva: World Health Organization; 2018 [cited 25.07.2019]. Available from: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates

[2]

Global Health Estimates 2016: Deaths by cause, age, sex, by country and by region, 2000-2016 [Internet]. Geneva: World Health Organization, 2018. Дата обращения: 25.07.2019. Режим доступа: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates

[3]

Global Health Estimates 2016: Deaths by cause, age, sex, by country and by region, 2000-2016 [Internet]. Geneva: World Health Organization; 2018 [cited 25.07.2019]. Available from: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates

[4]

Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56–e528. doi: 10.1161/CIR.0000000000000659

[5]

Benjamin E.J., Muntner P., Alonso A., et al. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association // Circulation. 2019. Vol. 139, N 10. P. e56–e528. doi: 10.1161/CIR.0000000000000659

[6]

Benjamin EJ, Muntner P, Alonso A, et al. Heart Disease and Stroke Statistics—2019 Update: A Report From the American Heart Association. Circulation. 2019;139(10):e56–e528. doi: 10.1161/CIR.0000000000000659

[7]

Mijajlović MD, Pavlović A, Brainin M, et al. Post-stroke dementia — a comprehensive review. BMC Medicine. 2017;15(1):11. doi: 10.1186/s12916-017-0779-7

[8]

Mijajlović M.D., Pavlović A., Brainin M., et al. Post-stroke dementia – a comprehensive review // BMC Medicine. 2017. Vol. 15, N 1. P. 11. doi: 10.1186/s12916-017-0779-7

[9]

Mijajlović MD, Pavlović A, Brainin M, et al. Post-stroke dementia — a comprehensive review. BMC Medicine. 2017;15(1):11. doi: 10.1186/s12916-017-0779-7

[10]

Pohjasvaara T, Erkinjuntti T, Ylikoski R, et al. Clinical Determinants of Poststroke Dementia. Stroke. 1998;29(1):75–81. doi: 10.1161/01.str.29.1.75

[11]

Pohjasvaara T., Erkinjuntti T., Ylikoski R., et al. Clinical Determinants of Poststroke Dementia // Stroke. 1998. Vol. 29, N 1. P. 75–81. doi: 10.1161/01.str.29.1.75

[12]

Pohjasvaara T, Erkinjuntti T, Ylikoski R, et al. Clinical Determinants of Poststroke Dementia. Stroke. 1998;29(1):75–81. doi: 10.1161/01.str.29.1.75

[13]

Barrett AM. Spatial Neglect and Anosognosia After Right Brain Stroke. Continuum (Minneapolis, Minn.). 2021;27(6):1624–1645. doi: 10.1212/CON.0000000000001076

[14]

Barrett A.M. Spatial Neglect and Anosognosia After Right Brain Stroke // Continuum (Minneapolis, Minn.). 2021. Vol. 27, N 6. P. 1624–1645. doi: 10.1212/CON.0000000000001076

[15]

Barrett AM. Spatial Neglect and Anosognosia After Right Brain Stroke. Continuum (Minneapolis, Minn.). 2021;27(6):1624–1645. doi: 10.1212/CON.0000000000001076

[16]

Broussolle E, Reynolds EH. Anglo-French neurological interactions in the 19th and early 20th centuries: Physicians, places and events. Revue neurologique. 2021;177(8):859–870. doi: 10.1016/j.neurol.2020.10.013

[17]

Broussolle E., Reynolds E.H. Anglo-French neurological interactions in the 19th and early 20th centuries: Physicians, places and events // Revue neurologique. 2021. Vol. 177, N 8. P. 859–870. doi: 10.1016/j.neurol.2020.10.013

[18]

Broussolle E, Reynolds EH. Anglo-French neurological interactions in the 19th and early 20th centuries: Physicians, places and events. Revue neurologique. 2021;177(8):859–870. doi: 10.1016/j.neurol.2020.10.013

[19]

Chakrabarty M, Pflieger EM, Cardillo E, Chatterjee A. Effects of Chronic Brain Injury on Quality of Life: A Study in Patients With Left- or Right-Sided Lesion. Archives of Rehabilitation Research and Clinical Translation. 2019;2(1):100031. doi: 10.1016/j.arrct.2019.100031

[20]

Chakrabarty M., Pflieger E.M., Cardillo E., Chatterjee A. Effects of Chronic Brain Injury on Quality of Life: A Study in Patients With Left- or Right-Sided Lesion // Archives of Rehabilitation Research and Clinical Translation. 2019. Vol. 2, N 1. P. 100031. doi: 10.1016/j.arrct.2019.100031

[21]

Chakrabarty M, Pflieger EM, Cardillo E, Chatterjee A. Effects of Chronic Brain Injury on Quality of Life: A Study in Patients With Left- or Right-Sided Lesion. Archives of Rehabilitation Research and Clinical Translation. 2019;2(1):100031. doi: 10.1016/j.arrct.2019.100031

[22]

Howard G, Till JS, Toole JF, et al. Factors Influencing Return to Work Following Cerebral Infarction. JAMA. 1985;253(2):226–232. doi: 10.1001/jama.1985.03350260078030

[23]

Howard G., Till J.S., Toole J.F., et al. Factors Influencing Return to Work Following Cerebral Infarction // JAMA. 1985. Vol. 253, N 2. P. 226–232. doi: 10.1001/jama.1985.03350260078030

[24]

Howard G, Till JS, Toole JF, et al. Factors Influencing Return to Work Following Cerebral Infarction. JAMA. 1985;253(2):226–232. doi: 10.1001/jama.1985.03350260078030

[25]

Penfield W, Rasmussen T. The cerebral cortex of man. New York: Macmillan Company; 1950.

[26]

Penfield W., Rasmussen T. The cerebral cortex of man. New York: Macmillan Company, 1950.

[27]

Penfield W, Rasmussen T. The cerebral cortex of man. New York: Macmillan Company; 1950.

[28]

Halligan P. Half a brain is enough: the story of Nico. Journal of Neurology Neurosurgery & Psychiatry. 2001;71(4):566. doi: 10.1136/jnnp.71.4.566b

[29]

Halligan P. Half a brain is enough: the story of Nico // Journal of Neurology Neurosurgery & Psychiatry. 2001. Vol. 71, N 4. P. 566. doi: 10.1136/jnnp.71.4.566b

[30]

Halligan P. Half a brain is enough: the story of Nico. Journal of Neurology Neurosurgery & Psychiatry. 2001;71(4):566. doi: 10.1136/jnnp.71.4.566b

[31]

Gumin IS, Gubskiy IL, Mironov MB, et al. Dyke–Davidoff–Masson syndrome: description of clinical case with diagnostics by EEG, MRI, MR-tractography, fMRI. Neuromuscular Diseases. 2021;11(1):47–57. doi: 10.17650/2222-8721-2021-11-1-47-57

[32]

Гумин И.С., Губский И.Л., Миронов М.Б., и др. Синдром Дайка–Давыдова–Массона: описание клинического случая, комплексная диагностика с применением видео-ЭЭГ-мониторинга, МРТ, МР-трактографии и фМРТ // Нервно-мышечные болезни. 2021. Т. 11, № 1. С. 47–57. doi: 10.17650/2222-8721-2021-11-1-47-57

[33]

Gumin IS, Gubskiy IL, Mironov MB, et al. Dyke–Davidoff–Masson syndrome: description of clinical case with diagnostics by EEG, MRI, MR-tractography, fMRI. Neuromuscular Diseases. 2021;11(1):47–57. doi: 10.17650/2222-8721-2021-11-1-47-57

[34]

Agris AR, Almazova AA, Altuhova TA, et al. Narusheniya pis’ma i chteniya u detej: izuchenie i korrekciya. Moscow: “LOGOMAG”; 2018. (In Russ.)

[35]

Агрис А.Р., Алмазова А.А., Алтухова Т.А., и др. Нарушения письма и чтения у детей: изучение и коррекция. Москва: «ЛОГОМАГ», 2018.

[36]

Agris AR, Almazova AA, Altuhova TA, et al. Narusheniya pis’ma i chteniya u detej: izuchenie i korrekciya. Moscow: “LOGOMAG”; 2018. (In Russ.)

[37]

Bain JS, Yeatman JD, Schurr R, et al. Evaluating arcuate fasciculus laterality measurements across dataset and tractography pipelines. Human Brain Mapping. 2019;40(13):3695–3711. doi: 10.1002/hbm.24626

[38]

Bain J.S., Yeatman J.D., Schurr R., et al. Evaluating arcuate fasciculus laterality measurements across dataset and tractography pipelines // Human Brain Mapping. 2019. Vol. 40, N 13, P. 3695–3711. doi: 10.1002/hbm.24626

[39]

Bain JS, Yeatman JD, Schurr R, et al. Evaluating arcuate fasciculus laterality measurements across dataset and tractography pipelines. Human Brain Mapping. 2019;40(13):3695–3711. doi: 10.1002/hbm.24626

[40]

Roiha K, Kirveskari E, Kaste M, et al. Reorganization of the primary somatosensory cortex during stroke recovery. Clinical Neurophysiology. 2011;122(2):339–345. doi: 10.1016/j.clinph.2010.06.032

[41]

Roiha K., Kirveskari E., Kaste M., et al. Reorganization of the primary somatosensory cortex during stroke recovery // Clinical Neurophysiology. 2011. Vol. 122, N 2. P. 339–345. doi: 10.1016/j.clinph.2010.06.032

[42]

Roiha K, Kirveskari E, Kaste M, et al. Reorganization of the primary somatosensory cortex during stroke recovery. Clinical Neurophysiology. 2011;122(2):339–345. doi: 10.1016/j.clinph.2010.06.032

[43]

Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D. Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI. Journal of neurophysiology. 2010;103(5):2544–2556. doi: 10.1152/jn.01017.2009

[44]

Sanchez-Panchuelo R.M., Francis S., Bowtell R., Schluppeck D. Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI // Journal of neurophysiology. 2010. Vol. 103, N 5. P. 2544–2556. doi: 10.1152/jn.01017.2009

[45]

Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D. Mapping Human Somatosensory Cortex in Individual Subjects With 7T Functional MRI. Journal of neurophysiology. 2010;103(5):2544–2556. doi: 10.1152/jn.01017.2009

[46]

Alary F, Doyon B, Loubinoux I, et al. Event-Related Potentials Elicited by Passive Movements in Humans: Characterization, Source Analysis, and Comparison to fMRI. Neuroimage. 1998;8(4):377–390. doi: 10.1006/nimg.1998.0377

[47]

Alary F., Doyon B., Loubinoux I., et al. Event-Related Potentials Elicited by Passive Movements in Humans: Characterization, Source Analysis, and Comparison to fMRI // Neuroimage. 1998. Vol. 8, N 4. P. 377–390. doi: 10.1006/nimg.1998.0377

[48]

Alary F, Doyon B, Loubinoux I, et al. Event-Related Potentials Elicited by Passive Movements in Humans: Characterization, Source Analysis, and Comparison to fMRI. Neuroimage. 1998;8(4):377–390. doi: 10.1006/nimg.1998.0377

[49]

Cramer SC, Moore CI, Finklestein SP, Rosen BR. A Pilot Study of Somatotopic Mapping After Cortical Infarct. Stroke. 2000;31(3):668–671. doi: 10.1161/01.str.31.3.668

[50]

Cramer S.C., Moore C.I., Finklestein S.P., Rosen B.R. A Pilot Study of Somatotopic Mapping After Cortical Infarct // Stroke. 2000. Vol. 31, N 3. P. 668–671. doi: 10.1161/01.str.31.3.668

[51]

Cramer SC, Moore CI, Finklestein SP, Rosen BR. A Pilot Study of Somatotopic Mapping After Cortical Infarct. Stroke. 2000;31(3):668–671. doi: 10.1161/01.str.31.3.668

[52]

Roux FE, Boulanouar K, Ibarrola D, et al. Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis. Journal of Neurology Neurosurgery & Psychiatry. 2000;69(4):453–463. doi: 10.1136/jnnp.69.4.453

[53]

Roux F.E., Boulanouar K., Ibarrola D., et al. Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis // Journal of Neurology Neurosurgery & Psychiatry. 2000. Vol. 69, N 4. P. 453–463. doi: 10.1136/jnnp.69.4.453

[54]

Roux FE, Boulanouar K, Ibarrola D, et al. Functional MRI and intraoperative brain mapping to evaluate brain plasticity in patients with brain tumours and hemiparesis. Journal of Neurology Neurosurgery & Psychiatry. 2000;69(4):453–463. doi: 10.1136/jnnp.69.4.453

[55]

Arsalidou M, Taylor MJ. Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage. 2011;54(3):2382–2393. doi: 10.1016/j.neuroimage.2010.10.009

[56]

Arsalidou M., Taylor M.J. Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations // Neuroimage. 2011. Vol. 54, N 3. P. 2382–2393. doi: 10.1016/j.neuroimage.2010.10.009

[57]

Arsalidou M, Taylor MJ. Is 2+2=4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage. 2011;54(3):2382–2393. doi: 10.1016/j.neuroimage.2010.10.009

[58]

Hawes Z, Sokolowski HM, Ononye CB, Ansari D. Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neuroscience and Biobehavioral Reviews. 2019;103:316–336. doi: 10.1016/j.neubiorev.2019.05.007

[59]

Hawes Z., Sokolowski H.M., Ononye C.B., Ansari D. Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation // Neuroscience and Biobehavioral Reviews. 2019. Vol. 103. P. 316–336. doi: 10.1016/j.neubiorev.2019.05.007

[60]

Hawes Z, Sokolowski HM, Ononye CB, Ansari D. Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neuroscience and Biobehavioral Reviews. 2019;103:316–336. doi: 10.1016/j.neubiorev.2019.05.007

[61]

Fedorenko E, Blank IA. Broca’s Area Is Not a Natural Kind. Trends in Cognitive Sciences. 2020;24(4):270–284. doi: 10.1016/j.tics.2020.01.001

[62]

Fedorenko E., Blank I.A. Broca’s Area Is Not a Natural Kind // Trends in Cognitive Sciences. 2020. Vol. 24, N 4. P. 270–284. doi: 10.1016/j.tics.2020.01.001

[63]

Fedorenko E, Blank IA. Broca’s Area Is Not a Natural Kind. Trends in Cognitive Sciences. 2020;24(4):270–284. doi: 10.1016/j.tics.2020.01.001

[64]

Bach-y-Rita P. Brain plasticity as a basis for recovery of function in humans. Neuropsychologia. 1990;28(6):547–554. doi: 10.1016/0028-3932(90)90033-k

[65]

Bach-y-Rita P. Brain plasticity as a basis for recovery of function in humans // Neuropsychologia. 1990. Vol. 28, N 6. P. 547–554. doi: 10.1016/0028-3932(90)90033-k

[66]

Bach-y-Rita P. Brain plasticity as a basis for recovery of function in humans. Neuropsychologia. 1990;28(6):547–554. doi: 10.1016/0028-3932(90)90033-k

[67]

Wan CY, Schlaug G. Music Making as a Tool for Promoting Brain Plasticity across the Life Span. Neuroscientist. 2010;16(5):566–577. doi: 10.1177/1073858410377805

[68]

Wan C.Y., Schlaug G. Music Making as a Tool for Promoting Brain Plasticity across the Life Span // Neuroscientist. 2010. Vol. 16, N 5. P. 566–577. doi: 10.1177/1073858410377805

[69]

Wan CY, Schlaug G. Music Making as a Tool for Promoting Brain Plasticity across the Life Span. Neuroscientist. 2010;16(5):566–577. doi: 10.1177/1073858410377805

[70]

Nudo RJ. Remodeling of cortical motor representations after stroke: implications for recovery from brain damage. Molecular Psychiatry. 1997;2(3):188–191. doi: 10.1038/sj.mp.4000188

[71]

Nudo R.J. Remodeling of cortical motor representations after stroke: implications for recovery from brain damage // Molecular Psychiatry. 1997. Vol. 2, N 3. P. 188–191. doi: 10.1038/sj.mp.4000188

[72]

Nudo RJ. Remodeling of cortical motor representations after stroke: implications for recovery from brain damage. Molecular Psychiatry. 1997;2(3):188–191. doi: 10.1038/sj.mp.4000188

[73]

Nudo RJ. Postinfarct Cortical Plasticity and Behavioral Recovery. Stroke. 2007;38(2):840–845. doi: 10.1161/01.STR.0000247943.12887.d2

[74]

Nudo R.J. Postinfarct Cortical Plasticity and Behavioral Recovery // Stroke. 2007. Vol. 38, N 2. P. 840–845. doi: 10.1161/01.STR.0000247943.12887.d2

[75]

Nudo RJ. Postinfarct Cortical Plasticity and Behavioral Recovery. Stroke. 2007;38(2):840–845. doi: 10.1161/01.STR.0000247943.12887.d2

RIGHTS & PERMISSIONS

Eco-Vector

PDF

130

Accesses

0

Citation

Detail

Sections
Recommended

/