Exploring the possibilities of an artificial intelligence program in the diagnosis of macular diseases
Margarita R. Khabazova , Elena N. Ponomareva , Igor A. Loskutov , Evgenia А. Katalevskaya , Alexander Yu. Sizov , Georgiy М. Gabaraev
Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (1) : 17 -28.
Exploring the possibilities of an artificial intelligence program in the diagnosis of macular diseases
BACKGROUND: Macular diseases are a large group of pathological conditions that cause vision loss and visual impairment. Early diagnosis of such changes plays an important role in treatment selection and is one of the crucial factors in predicting outcomes.
AIM: To examine the potential of an artificial intelligence program in the diagnosis of macular diseases using structural optical coherence tomography scans.
MATERIALS AND METHODS: The study included patients examined and treated at the Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies and Moscow Regional Research and Clinical Institute. In total, 200 eyes with macular diseases were examined, as well as eyes without macular pathologies. A comparative clinical analysis of structural optical coherence tomography scans obtained using an RTVue XR 110-2 tomograph was conducted. The Retina.AI software was used to analyze optical coherence tomography scans.
RESULTS: In the analysis of optical coherence tomography scans using Retina.AI, various pathological structures of the macula were identified, and a probable pathology was then determined. The results were compared with the diagnoses made by ophthalmologists. The sensitivity, specificity, and accuracy of the method were 95.16%, 97.76%, and 97.38%, respectively.
CONCLUSION: Retina.AI allows ophthalmologists to automatically analyze optical coherence tomography scans and identify various pathological conditions of the fundus.
optical coherence tomography / artificial intelligence / diagnosis / macular edema / age-related macular degeneration
| [1] |
Report of the 2030 targets on effective coverage of eye care [Internet]. Geneva: World Health Organization. c2024. [cited 2023 Jan 1]. Available from: https://www.who.int/publications/i/item/9789240058002 |
| [2] |
Report of the 2030 targets on effective coverage of eye care [Internet]. Geneva : World Health Organization. c2024. [дата обращения: 1.01.2023]. Доступ по ссылке: https://www.who.int/publications/i/item/9789240058002 |
| [3] |
Report of the 2030 targets on effective coverage of eye care [Internet]. Geneva: World Health Organization. c2024. [cited 2023 Jan 1]. Available from: https://www.who.int/publications/i/item/9789240058002 |
| [4] |
GBD 2019 Blindness and Vision Impairment Collaborators. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9(2):144–160. doi: 10.1016/S2214-109X(20)30489-7 |
| [5] |
GBD 2019 Blindness and Vision Impairment Collaborators. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study // Lancet Glob Health. 2021. Vol. 9, N 2. P. 144–160. doi: 10.1016/S2214-109X(20)30489-7 |
| [6] |
GBD 2019 Blindness and Vision Impairment Collaborators. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9(2):144–160. doi: 10.1016/S2214-109X(20)30489-7 |
| [7] |
Samanta A, Aziz AA, Jhingan M, et al. Emerging Therapies in Neovascular Age-Related Macular Degeneration in 2020. Asia Pac J Ophthalmol (Phila). 2020;9(3):250–259. doi: 10.1097/APO.0000000000000291 |
| [8] |
Samanta A., Aziz A.A., Jhingan M., et al. Emerging Therapies in Neovascular Age-Related Macular Degeneration in 2020 // Asia Pac J Ophthalmol (Phila). 2020. Vol. 9, N 3. P. 250–259. doi: 10.1097/APO.0000000000000291 |
| [9] |
Samanta A, Aziz AA, Jhingan M, et al. Emerging Therapies in Neovascular Age-Related Macular Degeneration in 2020. Asia Pac J Ophthalmol (Phila). 2020;9(3):250–259. doi: 10.1097/APO.0000000000000291 |
| [10] |
Stahl A. The Diagnosis and Treatment of Age-Related Macular Degeneration. Dtsch Arztebl Int. 2020;117:513–520. doi: 10.3238/arztebl.2020.0513 |
| [11] |
Stahl A. The Diagnosis and Treatment of Age-Related Macular Degeneration // Dtsch Arztebl Int. 2020. Vol. 117. P. 513–520. doi: 10.3238/arztebl.2020.0513 |
| [12] |
Stahl A. The Diagnosis and Treatment of Age-Related Macular Degeneration. Dtsch Arztebl Int. 2020;117:513–520. doi: 10.3238/arztebl.2020.0513 |
| [13] |
Teo ZL, Tham YC, Yu M, et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology. 2021;128(11):1580–1591. doi: 10.1016/j.ophtha.2021.04.027 |
| [14] |
Teo Z.L., Tham Y.C., Yu M., et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis // Ophthalmology. 2021. Vol. 128, N 11. P. 1580–1591. doi: 10.1016/j.ophtha.2021.04.027 |
| [15] |
Teo ZL, Tham YC, Yu M, et al. Global Prevalence of Diabetic Retinopathy and Projection of Burden through 2045: Systematic Review and Meta-analysis. Ophthalmology. 2021;128(11):1580–1591. doi: 10.1016/j.ophtha.2021.04.027 |
| [16] |
Schaal S, Kaplan HJ, editors. Cystoid Macular Edema. Switzerland: Springer International Publishing; 2017. doi: 10.1007/978-3-319-39766-5 |
| [17] |
Schaal S., Kaplan H.J., editors. Cystoid Macular Edema. Switzerland : Springer International Publishing, 2017. doi: 10.1007/978-3-319-39766-5 |
| [18] |
Schaal S, Kaplan HJ, editors. Cystoid Macular Edema. Switzerland: Springer International Publishing; 2017. doi: 10.1007/978-3-319-39766-5 |
| [19] |
Bikbov MM, Fayzrakhmanov RR, Zaynullin RM, et al. Macular oedema as manifestation of diabetic retinopathy. Diabetes mellitus. 2017;20(4):263–269. EDN: ZMZAON doi: 10.14341/DM8328 |
| [20] |
Бикбов М.М., Файзрахманов Р.Р., Зайнуллин Р.М., и др. Макулярный отёк как проявление диабетической ретинопатии // Сахарный диабет. 2017. Т. 20, № 4. С. 263–269. EDN: ZMZAON doi: 10.14341/DM8328 |
| [21] |
Bikbov MM, Fayzrakhmanov RR, Zaynullin RM, et al. Macular oedema as manifestation of diabetic retinopathy. Diabetes mellitus. 2017;20(4):263–269. EDN: ZMZAON doi: 10.14341/DM8328 |
| [22] |
Chernykh DV, Chernykh VV, Trunov AN. Cytokines and growth factors in the pathogenesis of proliferative diabetic retinopathy. Moscow: Oftal’mologiya; 2017. EDN: ZNDEWH |
| [23] |
Черных Д.В., Черных В.В., Трунов А.Н. Цитокины и факторы роста в патогенезе пролиферативной диабетической ретинопатии. Москва : Офтальмология, 2017. EDN: ZNDEWH |
| [24] |
Chernykh DV, Chernykh VV, Trunov AN. Cytokines and growth factors in the pathogenesis of proliferative diabetic retinopathy. Moscow: Oftal’mologiya; 2017. EDN: ZNDEWH |
| [25] |
Gupta A, Tripathy K. Central Serous Chorioretinopathy [Internet]. [Updated 2022 Aug 22]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022. Available from: https://www.statpearls.com/point-of-care/96027 |
| [26] |
Gupta A., Tripathy K. Central Serous Chorioretinopathy [Internet]. [Updated 2022 Aug 22]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022. Доступ по ссылке: https://www.statpearls.com/point-of-care/96027 |
| [27] |
Gupta A, Tripathy K. Central Serous Chorioretinopathy [Internet]. [Updated 2022 Aug 22]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022. Available from: https://www.statpearls.com/point-of-care/96027 |
| [28] |
Semeraro F, Morescalchi F, Russo A, et al. Central Serous Chorioretinopathy: Pathogenesis and Management. Clinical ophthalmology. 2019;13:2341–2352. doi: 10.2147/OPTH.S220845 |
| [29] |
Semeraro F., Morescalchi F., Russo A., et al. Central Serous Chorioretinopathy: Pathogenesis and Management // Clinical ophthalmology. 2019. Vol. 13. P. 2341–2352. doi: 10.2147/OPTH.S220845 |
| [30] |
Semeraro F, Morescalchi F, Russo A, et al. Central Serous Chorioretinopathy: Pathogenesis and Management. Clinical ophthalmology. 2019;13:2341–2352. doi: 10.2147/OPTH.S220845 |
| [31] |
Oh KT, Lazzaro DR, editors. Macular Hole. [Internet]. Medscape, 2020. [cited 2020 Jan 02]. Available from: https://emedicine.medscape.com/article/1224320-overview#a6 |
| [32] |
Oh K.T., Lazzaro D.R., editors. Macular Hole. [Internet]. Medscape, 2020. [Дата обращения: 02.01.2020]. Доступ по ссылке: https://emedicine.medscape.com/article/1224320-overview#a6 |
| [33] |
Oh KT, Lazzaro DR, editors. Macular Hole. [Internet]. Medscape, 2020. [cited 2020 Jan 02]. Available from: https://emedicine.medscape.com/article/1224320-overview#a6 |
| [34] |
Darian-Smith E, Howie AR, Allen PL, et al. Tasmanian macular hole study: whole population-based incidence of full thickness macular hole. Clinical & Experimental Ophthalmology. 2016;44(9):812–816. doi: 10.1111/ceo.12801 |
| [35] |
Darian-Smith E., Howie A.R., Allen P.L., et al. Tasmanian macular hole study: whole population-based incidence of full thickness macular hole // Clin Exp Ophthalmol. 2016. Vol. 44, N 9. P. 812–816. doi: 10.1111/ceo.12801 |
| [36] |
Darian-Smith E, Howie AR, Allen PL, et al. Tasmanian macular hole study: whole population-based incidence of full thickness macular hole. Clinical & Experimental Ophthalmology. 2016;44(9):812–816. doi: 10.1111/ceo.12801 |
| [37] |
Fung AT, Galvin J, Tran T. Epiretinal membrane: A review. Clinical & Experimental Ophthalmology. 2021;49:289–308. doi: 10.1111/ceo.13914 |
| [38] |
Fung A.T., Galvin J., Tran T. Epiretinal membrane: A review // Clin Experiment Ophthalmol. 2021. Vol. 49. P. 289–308. doi: 10.1111/ceo.13914 |
| [39] |
Fung AT, Galvin J, Tran T. Epiretinal membrane: A review. Clinical & Experimental Ophthalmology. 2021;49:289–308. doi: 10.1111/ceo.13914 |
| [40] |
Oh KT, Lazzaro DR, editors. Epiretinal Membrane [Internet]. Medscape, 2020. [cited 2020 Jan 02]. Available from: https://emedicine.medscape.com/article/1223882-overview#a4 |
| [41] |
Oh K.T., Lazzaro D.R., editors. Epiretinal Membrane [Internet]. Medscape, 2020. [Дата обращения: 02.01.2020]. Доступ по ссылке: https://emedicine.medscape.com/article/1223882-overview#a4 |
| [42] |
Oh KT, Lazzaro DR, editors. Epiretinal Membrane [Internet]. Medscape, 2020. [cited 2020 Jan 02]. Available from: https://emedicine.medscape.com/article/1223882-overview#a4 |
| [43] |
World Health Organization. Regional Office for Europe. Screening for diabetic retinopathy: a short guide. Increase effectiveness, maximize benefits and minimize harm [Internet]. Copenhagen; 2021. [cited 2020 Jan 02]. Available from: https://www.who.int/europe/publications/i/item/9789289055321 |
| [44] |
Всемирная организация здравоохранения. Европейское региональное бюро. Скрининг на диабетическую ретинопатию: Повышение эффективности, максимальное увеличение пользы и минимизация вреда, краткое руководство [Internet]. Копенгаген, 2021. [Дата обращения: 02.01.2020]. Доступ по ссылке: https://www.who.int/europe/publications/i/item/9789289055321 |
| [45] |
World Health Organization. Regional Office for Europe. Screening for diabetic retinopathy: a short guide. Increase effectiveness, maximize benefits and minimize harm [Internet]. Copenhagen; 2021. [cited 2020 Jan 02]. Available from: https://www.who.int/europe/publications/i/item/9789289055321 |
| [46] |
Qassimi AN, Kozak I, Karam AM, et al. Management of Diabetic Macular Edema: Guidelines from the Emirates Society of Ophthalmology. Ophthalmology and therapy. 2022;11:1937–1950. doi: 10.1007/s40123-022-00547-2 |
| [47] |
Qassimi A.N., Kozak I., Karam A.M., et al. Management of Diabetic Macular Edema: Guidelines from the Emirates Society of Ophthalmology // Ophthalmology and therapy. 2022. Vol. 11. P. 1937–1950. doi: 10.1007/s40123-022-00547-2 |
| [48] |
Qassimi AN, Kozak I, Karam AM, et al. Management of Diabetic Macular Edema: Guidelines from the Emirates Society of Ophthalmology. Ophthalmology and therapy. 2022;11:1937–1950. doi: 10.1007/s40123-022-00547-2 |
| [49] |
Katalevskaya EA, Katalevskiy DYu, Tyurikov MI, Velieva IA, Bol’shunov AV. Future of artificial intelligence for the diagnosis and treatment of retinal diseases. Russian journal of clinical ophthalmology. 2022;22(1):36–43. EDN: AEBQGU doi: 10.32364/2311-7729-2022-22-1-36-43 |
| [50] |
Каталевская Е.А., Каталевский Д.Ю., Тюриков М.И., Велиева И.А., Большунов А.В. Перспективы использования искусственного интеллекта в диагностике и лечении заболеваний сетчатки // РМЖ. Клиническая офтальмология. 2022. Т. 22, № 1. С. 36–43. EDN: AEBQGU doi: 10.32364/2311-7729-2022-22-1-36-43 |
| [51] |
Katalevskaya EA, Katalevskiy DYu, Tyurikov MI, Velieva IA, Bol’shunov AV. Future of artificial intelligence for the diagnosis and treatment of retinal diseases. Russian journal of clinical ophthalmology. 2022;22(1):36–43. EDN: AEBQGU doi: 10.32364/2311-7729-2022-22-1-36-43 |
| [52] |
Schmidt-Erfurth U, Reiter GS, Riedl S, et al. AI-based monitoring of retinal fluid in disease activity and under therapy. Prog Retin Eye Res. 2022;86. doi: 10.1016/j.preteyeres.2021.100972 |
| [53] |
Schmidt-Erfurth U., Reiter G.S., Riedl S., et al. AI-based monitoring of retinal fluid in disease activity and under therapy // Prog Retin Eye Res. 2022. Vol. 86. doi: 10.1016/j.preteyeres.2021.100972 |
| [54] |
Schmidt-Erfurth U, Reiter GS, Riedl S, et al. AI-based monitoring of retinal fluid in disease activity and under therapy. Prog Retin Eye Res. 2022;86. doi: 10.1016/j.preteyeres.2021.100972 |
| [55] |
Altris.ai [Internet]. United States: Altris Inc. [cited 2022 Jan 01]. Available from: https://www.altris.ai |
| [56] |
Altris.ai [Internet]. United States : Altris Inc. [Дата обращения: 01.01.2022]. Доступ по ссылке: https://www.altris.ai |
| [57] |
Altris.ai [Internet]. United States: Altris Inc. [cited 2022 Jan 01]. Available from: https://www.altris.ai |
| [58] |
Malyugin BE, Sakhnov SN, Axenova LE, et al. A deep machine learning model development for the biomarkers of the anatomical and functional anti-VEGF therapy outcome detection on retinal OCT images. Fyodorov Journal of Ophthalmic Surgery. 2022;(S4):77–84. EDN: OWQLRM doi: 10.25276/0235-4160-2022-4S-77-84 |
| [59] |
Малюгин Б.Э., Сахнов С.Н., Аксенова Л.Е., и др. Разработка модели глубокого машинного обучения для обнаружения биомаркёров анатомического и функционального исхода анти-VEGF-терапии на ОКТ-изображениях сетчатки // Офтальмохирургия. 2022. № S4. С. 77–84. EDN: OWQLRM doi: 10.25276/0235-4160-2022-4S-77-84 |
| [60] |
Malyugin BE, Sakhnov SN, Axenova LE, et al. A deep machine learning model development for the biomarkers of the anatomical and functional anti-VEGF therapy outcome detection on retinal OCT images. Fyodorov Journal of Ophthalmic Surgery. 2022;(S4):77–84. EDN: OWQLRM doi: 10.25276/0235-4160-2022-4S-77-84 |
Eco-Vector
/
| 〈 |
|
〉 |