Priority radiomic parameters for computed tomography of head and neck malignancies: A systematic review
Yuriy A. Vasilev , Olga G. Nanova , Ivan A. Blokhin , Roman V. Reshetnikov , Anton V. Vladzymyrskyy , Olga V. Omelyanskaya
Digital Diagnostics ›› 2024, Vol. 5 ›› Issue (2) : 255 -268.
Priority radiomic parameters for computed tomography of head and neck malignancies: A systematic review
BACKGROUND: Radiomics is the newest and most promising direction in modern radiographic diagnostics. The number of head and neck cancer studies employing radiomics is increasing annually. A systematic review of recent publications (2021–2023) on computed tomography (CT) of head and neck malignancies was performed.
AIM: To present systematized data on parameters for radiomic analysis for head and neck malignancies identified by CT data.
MATERIALS AND METHODS: The literature search was carried out in PubMed. The basic characteristics of the selected articles were extracted, and their quality was assessed using RQS 2.0 and the modified QUADAS-CAD questionnaire. The reproducibility level of radiomic parameters selected for predictive models in different studies was assessed. Eleven articles were selected for the review. In most cases, a high risk of systematic error associated with data imbalance in terms of demographic parameters and level of pathologies was noted.
RESULTS: The range of RQS 2.0 scores for the included articles varied from 19.44% to 50.00% of the maximum possible score. The decreasing research quality was mainly caused by the lack of external result validation (73% of the analyzed articles) and data accessibility and transparency (82%). Inter-study reproducibility of radiomic parameters was low owing to the wide variety of techniques used for image acquisition, image post-processing, extraction, and statistical processing of radiomic parameters.
CONCLUSION: A set of stable radiomic parameters must be successfully introduced into clinical practice. The standardization of radiomics method and creation of an open radiomics database are necessary for this purpose.
radiomics / head and neck cancer / radiomic parameters
| [1] |
Rizzo S, Botta F, Raimondi S, et al. Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp. 2018;2. doi: 10.1186/s41747-018-0068-z |
| [2] |
Rizzo S., Botta F., Raimondi S., et al. Radiomics: the facts and the challenges of image analysis // Eur Radiol Exp. 2018. Vol. 2. doi: 10.1186/s41747-018-0068-z |
| [3] |
Lambin P, Leijenaar R, Deist T, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14:749–762. doi: 10.1038/nrclinonc.2017.141 |
| [4] |
Lambin P., Leijenaar R., Deist T., et al. Radiomics: the bridge between medical imaging and personalized medicine // Nat Rev Clin Oncol. 2017. Vol. 14. P. 749–762. doi: 10.1038/nrclinonc.2017.141 |
| [5] |
Mayerhoefer ME, Materka A, Langs G, et al. Introduction to Radiomics. J Nucl Med. 2020;61(4):488–495. doi: 10.2967/jnumed.118.222893 |
| [6] |
Mayerhoefer M.E., Materka A., Langs G., et al. Introduction to Radiomics // J Nucl Med. 2020. Vol. 61, N 4. P. 488–495. doi: 10.2967/jnumed.118.222893 |
| [7] |
Wan Y, Yang P, Xu L, et al. Radiomics analysis combining unsupervised learning and handcrafted features: A multiple-disease study. Medical Physics. 2021;48(11):7003–7015. doi: 10.1002/mp.15199 |
| [8] |
Wan Y., Yang P., Xu L., et al. Radiomics analysis combining unsupervised learning and handcrafted features: A multiple-disease study // Medical Physics. 2021. Vol. 48, N 11. P. 7003–7015. doi: 10.1002/mp.15199 |
| [9] |
Zwanenburg A, Vallières M, Abdalah MA, et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology. 2020;295(2). doi: 10.1148/radiol.2020191145 |
| [10] |
Zwanenburg A., Vallières M., Abdalah M.A., et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping // Radiology. 2020. Vol. 295, N 2. doi: 10.1148/radiol.2020191145 |
| [11] |
Berenguer R, Pastor-Juan M, Canales-Vázquez J, et al. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology. 2018;288(2). doi: 10.1148/radiol.2018172361 |
| [12] |
Berenguer R., Pastor-Juan M., Canales-Vázquez J., et al. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters // Radiology. 2018. Vol. 288, N 2. doi: 10.1148/radiol.2018172361 |
| [13] |
Laura QM, Chow MD. Head and Neck Cancer. N Engl J Med. 2020;382:60–72. doi: 10.1056/NEJMra1715715 |
| [14] |
Laura Q.M., Chow M.D. Head and Neck Cancer // N Engl J Med. 2020. Vol. 382. P. 60–72. doi: 10.1056/NEJMra1715715 |
| [15] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Ca Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660 |
| [16] |
Sung H., Ferlay J., Siegel R.L., et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries // Ca Cancer J Clin. 2021. Vol. 71, N 3. P. 209–249. doi: 10.3322/caac.21660 |
| [17] |
Bolotina LV, Vladimirova LYu, Den’gina NV, Novik AV, Romanov IS. Practice guidelines for the treatment of malignant tumors of the head and neck. Zlokačestvennye opuholi. 2020;10(3s2-1):93–108. (In Russ). doi: 10.18027/2224-5057-2020-10-3s2-06 |
| [18] |
Болотина Л.В., Владимирова Л.Ю., Деньгина Н.В., Новик А.В., Романов И.С. Практические рекомендации по лечению злокачественных опухолей головы и шеи // Злокачественные опухоли. 2020. Т. 10, № 3s2-1. С. 93–108. doi: 10.18027/2224-5057-2020-10-3s2-06 |
| [19] |
Bossi P, Chan AT, Licitra L, et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of oncology. 2021;32(4):452–465. doi: 10.1016/j.annonc.2020.12.007 |
| [20] |
Bossi P., Chan A.T., Licitra L., et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up // Annals of oncology. 2021. Vol. 32, N 4. P. 452–465. doi: 10.1016/j.annonc.2020.12.007 |
| [21] |
Petrovichev VS, Neklyudova MV, Sinitsyn VE, Nikitin IG. Dual-energy computed tomography for head and neck cancer. Digital Diagnostics. 2021;2(3):343–355. doi: 10.17816/DD62572 |
| [22] |
Петровичев В.С., Неклюдова М.В., Синицын В.Е., Никитин И.Г. Двухэнергетическая компьютерная томография рака головы и шеи // Digital Diagnostics. 2021. Т. 2, № 3. С. 343–355. doi: 10.17816/DD62572 |
| [23] |
Guha A, Connor S, Anjari M, et al. Radiomic analysis for response assessment in advanced head and neck cancers, a distant dream or an inevitable reality? A systematic review of the current level of evidence. BJR. 2019;93(1106). doi: 10.1259/bjr.20190496 |
| [24] |
Guha A., Connor S., Anjari M., et al. Radiomic analysis for response assessment in advanced head and neck cancers, a distant dream or an inevitable reality? A systematic review of the current level of evidence // BJR. 2019. Vol. 93, N 1106. doi: 10.1259/bjr.20190496 |
| [25] |
Giannitto C, Mercante G, Ammirabile A, et al. Radiomics-based machine learning for the diagnosis of lymph node metastases in patients with head and neck cancer: Systematic review. Head & Neck. 2022;45(2):482–491. doi: 10.1002/hed.27239 |
| [26] |
Giannitto C., Mercante G., Ammirabile A., et al. Radiomics-based machine learning for the diagnosis of lymph node metastases in patients with head and neck cancer: Systematic review // Head & Neck. 2022. Vol. 45, N 2. P. 482–491. doi: 10.1002/hed.27239 |
| [27] |
Yu Y, Li X, Li W, Wang H, Wang Y. Pretreatment radiomics power in evaluating neoadjuvant chemotherapy response and outcome for patients with head and neck squamous cell carcinoma: a systematic review and meta-analysis. Preprint. 2023. doi: 10.21203/rs.3.rs-2530190/v1 |
| [28] |
Yu Y., Li X., Li W., Wang H., Wang Y. Pretreatment radiomics power in evaluating neoadjuvant chemotherapy response and outcome for patients with head and neck squamous cell carcinoma: a systematic review and meta-analysis. Preprint. 2023. doi: 10.21203/rs.3.rs-2530190/v1 |
| [29] |
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372. doi: 10.1136/bmj.n71 |
| [30] |
Page M.J., McKenzie J.E., Bossuyt P.M., et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews // BMJ. 2021. Vol. 372. doi: 10.1136/bmj.n71 |
| [31] |
Radiomics Quality Score — RQS 2.0 [Internet]. [cited 1 Jan 2023]. Available from: https://www.radiomics.world/rqs2 |
| [32] |
Radiomics Quality Score — RQS 2.0. [Internet]. [дата обращения 01.01.2023]. Доступ по ссылке: https://www.radiomics.world/rqs2 |
| [33] |
Kodenko MR, Vasilev YA, Vladzymyrskyy AV, et al. Diagnostic Accuracy of AI for Opportunistic Screening of Abdominal Aortic Aneurysm in CT: A Systematic Review and Narrative Synthesis. Diagnostics. 2022;12(12):3197. doi: 10.3390/diagnostics12123197 |
| [34] |
Kodenko M.R., Vasilev Y.A., Vladzymyrskyy A.V., et al. Diagnostic Accuracy of AI for Opportunistic Screening of Abdominal Aortic Aneurysm in CT: A Systematic Review and Narrative Synthesis // Diagnostics. 2022. Vol. 12, N 12. P. 3197. doi: 10.3390/diagnostics12123197 |
| [35] |
Kodenko MR, Reshetnikov RV, Makarova TA. Modification of quality assessment tool for artificial intelligence diagnostic test accuracy studies (QUADAS-CAD). Digital Diagnostics. 2022;3(S1):4–5. doi: 10.17816/DD105567 |
| [36] |
Коденко М.Р., Решетников Р.В., Макарова Т.А. Инструмент оценки качества исследований диагностической точности алгоритмов искусственного интеллекта (QUADAS-CAD) // Digital Diagnostics. 2022. Т. 3, № S1. С. 4–5. doi: 10.17816/DD105567 |
| [37] |
Teng X, Zhang J, Ma Z, et al. Improving radiomic model reliability using robust features from perturbations for head-and-neck carcinoma. Front. Oncol. 2022;12. doi: 10.3389/fonc.2022.974467 |
| [38] |
Teng X., Zhang J., Ma Z., et al. Improving radiomic model reliability using robust features from perturbations for head-and-neck carcinoma // Front. Oncol. 2022. Vol. 12. doi: 10.3389/fonc.2022.974467 |
| [39] |
Liu X, Maleki F, Muthukrishnan N, et al. Site-Specific Variation in Radiomic Features of Head and Neck Squamous Cell Carcinoma and Its Impact on Machine Learning Models. Cancers. 2021;13(15). doi: 10.3390/cancers13153723 |
| [40] |
Liu X., Maleki F., Muthukrishnan N., et al. Site-Specific Variation in Radiomic Features of Head and Neck Squamous Cell Carcinoma and Its Impact on Machine Learning Models // Cancers. 2021. Vol. 13, N 15. doi: 10.3390/cancers13153723 |
| [41] |
Zhao X, Li W, Zhang J, et al. Radiomics analysis of CT imaging improves preoperative prediction of cervical lymph node metastasis in laryngeal squamous cell carcinoma. European Radiology. 2023;33:1121–1131. doi: 10.1007/s00330-022-09051-4 |
| [42] |
Zhao X., Li W., Zhang J., et al. Radiomics analysis of CT imaging improves preoperative prediction of cervical lymph node metastasis in laryngeal squamous cell carcinoma // European Radiology. 2023. Vol. 33. P. 1121–1131. doi: 10.1007/s00330-022-09051-4 |
| [43] |
Zhang W, Peng J, Zhao S, et al. Deep learning combined with radiomics for the classification of enlarged cervical lymph nodes. Journal of Cancer Research and Clinical Oncology. 2022;148:2773–2780. doi: 10.1007/s00432-022-04047-5 |
| [44] |
Zhang W., Peng J., Zhao S., et al. Deep learning combined with radiomics for the classification of enlarged cervical lymph nodes // Journal of Cancer Research and Clinical Oncology. 2022. Vol. 148. P. 2773–2780. doi: 10.1007/s00432-022-04047-5 |
| [45] |
Yang G, Yang F, Zhang F, et al. Radiomics Profiling Identifies the Value of CT Features for the Preoperative Evaluation of Lymph Node Metastasis in Papillary Thyroid Carcinoma. Diagnostics. 2022;12(5). doi: 10.3390/diagnostics12051119 |
| [46] |
Yang G., Yang F., Zhang F., et al. Radiomics Profiling Identifies the Value of CT Features for the Preoperative Evaluation of Lymph Node Metastasis in Papillary Thyroid Carcinoma // Diagnostics. 2022. Vol. 12, N 5. doi: 10.3390/diagnostics12051119 |
| [47] |
Li J, Wu X, Mao N, et al. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study. Front. Endocrinol. 2021;12. doi: 10.3389/fendo.2021.741698 |
| [48] |
Li J., Wu X., Mao N., et al. Computed Tomography-Based Radiomics Model to Predict Central Cervical Lymph Node Metastases in Papillary Thyroid Carcinoma: A Multicenter Study // Front. Endocrinol. 2021. Vol. 12. doi: 10.3389/fendo.2021.741698 |
| [49] |
Franzese C, Lillo S, Cozzi L, et al. Predictive value of clinical and radiomic features for radiation therapy response in patients with lymph node-positive head and neck cancer. Head & Neck. 2023;45(5):1184–1193. doi: 10.1002/hed.27332 |
| [50] |
Franzese C., Lillo S., Cozzi L., et al. Predictive value of clinical and radiomic features for radiation therapy response in patients with lymph node-positive head and neck cancer // Head & Neck. 2023. Vol. 45, N 5. P. 1184–1193. doi: 10.1002/hed.27332 |
| [51] |
Gonçalves M, Gsaxner Ch, Ferreira A, et al. Radiomics in Head and Neck Cancer Outcome Predictions. Diagnostics. 2022;12(11). doi: 10.3390/diagnostics12112733 |
| [52] |
Gonçalves M., Gsaxner Ch., Ferreira A., et al. Radiomics in Head and Neck Cancer Outcome Predictions // Diagnostics. 2022. Vol. 12, N 11. doi: 10.3390/diagnostics12112733 |
| [53] |
Zhai T, Wesseling F, Langendijk J, et al. External validation of nodal failure prediction models including radiomics in head and neck cancer. Oral Oncology. 2021;112. doi: 10.1016/j.oraloncology.2020.105083 |
| [54] |
Zhai T., Wesseling F., Langendijk J., et al. External validation of nodal failure prediction models including radiomics in head and neck cancer // Oral Oncology. 2021. Vol. 112. doi: 10.1016/j.oraloncology.2020.105083 |
| [55] |
Morgan HE, Wang K, Dohopolski M, et al. Exploratory ensemble interpretable model for predicting local failure in head and neck cancer: the additive benefit of CT and intra-treatment cone-beam computed tomography features. Quant Imaging Med Surg. 2021;11(12):4781–4796. doi: 10.21037/qims-21-274 |
| [56] |
Morgan H.E., Wang K., Dohopolski M., et al. Exploratory ensemble interpretable model for predicting local failure in head and neck cancer: the additive benefit of CT and intra-treatment cone-beam computed tomography features // Quant Imaging Med Surg. 2021. Vol. 11, N 12. P. 4781–4796. doi: 10.21037/qims-21-274 |
| [57] |
Intarak S, Chongpison Y, Vimolnoch M, et al. Tumor Prognostic Prediction of Nasopharyngeal Carcinoma Using CT-Based Radiomics in Non-Chinese Patients. Front. Oncol. 2022;12. doi: 10.3389/fonc.2022.775248 |
| [58] |
Intarak S., Chongpison Y., Vimolnoch M., et al. Tumor Prognostic Prediction of Nasopharyngeal Carcinoma Using CT-Based Radiomics in Non-Chinese Patients // Front. Oncol. 2022. Vol. 12. doi: 10.3389/fonc.2022.775248 |
| [59] |
Zhong J, Lu J, Zhang G, et al. An overview of meta-analyses on radiomics: more evidence is needed to support clinical translation. Insights Imaging. 2023;14. doi: 10.1186/s13244-023-01437-2 |
| [60] |
Zhong J., Lu J., Zhang G., et al. An overview of meta-analyses on radiomics: more evidence is needed to support clinical translation // Insights Imaging. 2023. Vol. 14. doi: 10.1186/s13244-023-01437-2 |
| [61] |
Certificate of state registration of the computer program № 2022617324/ 19.04.2022. Morozov SP, Andreichenko AE, Chetverikov SF, et al. Web-based tool for performing ROC analysis of diagnostic test results: № 2022616046. (In Russ). |
| [62] |
Свидетельство о государственной регистрации программы для ЭВМ № 2022617324/ 19.04.2022. Морозов С.П., Андрейченко А.Е., Четвериков С.Ф., и др. Веб-инструмент для выполнения ROC анализа результатов диагностических тестов: № 2022616046. |
| [63] |
Giraud P, Giraud Ph, Gasnier A, et al. Radiomics and Machine Learning for Radiotherapy in Head and Neck Cancers. Front. Oncol. 2019;9. doi: 10.3389/fonc.2019.00174 |
| [64] |
Giraud P., Giraud Ph., Gasnier A., et al. Radiomics and Machine Learning for Radiotherapy in Head and Neck Cancers // Front. Oncol. 2019. Vol. 9. doi: 10.3389/fonc.2019.00174 |
| [65] |
Certificate of state registration of the computer program № 2023619686/ 15.05.2023. Vasilev YuA, Vladzymirskyy AV, Omelyanskaya OV, et al. Web-based tool for quality control of datasets: № 2023617136. (In Russ). |
| [66] |
Свидетельство о государственной регистрации программы для ЭВМ № 2023619686/ 15.05.2023. Васильев Ю.А., Владзимирский А.В., Омелянская О.В., и др. Веб-инструмент для контроля качества датасетов: № 2023617136. |
| [67] |
Gundersen OE, Kjensmo S. State of the Art: Reproducibility in Artificial Intelligence. Proceedings of the AAAI Conference on Artificial Intelligence. 2018;32(1). doi: 10.1609/aaai.v32i1.11503 |
| [68] |
Gundersen O.E., Kjensmo S. State of the Art: Reproducibility in Artificial Intelligence // Proceedings of the AAAI Conference on Artificial Intelligence. 2018. Vol. 32, N 1. doi: 10.1609/aaai.v32i1.11503 |
| [69] |
Tortora M, Gemini L, Scaravilli A, et al. Radiomics Applications in Head and Neck Tumor Imaging: A Narrative Review. Cancers. 2023;15(4). doi: 10.3390/cancers15041174 |
| [70] |
Tortora M., Gemini L., Scaravilli A., et al. Radiomics Applications in Head and Neck Tumor Imaging: A Narrative Review // Cancers. 2023. Vol. 15, N 4. doi: 10.3390/cancers15041174 |
| [71] |
Image Biomarker Standardisation Initiative (IBSI) [Internet]. [cited 1 Jan 2023]. Available from: https://theibsi.github.io/ |
| [72] |
Image Biomarker Standardisation Initiative (IBSI) [Internet]. [дата обращения: 01.01.2023]. Доступ по ссылке: https://theibsi.github.io/ |
| [73] |
Morozov SP, Vladzymirskyy AV, Klyashtornyi VG, et al. Practice guidelines for the treatment of malignant tumors of the head and neck. Moscow; 2019. (In Russ). |
| [74] |
Морозов С.П., Владзимирский А.В., Кляшторный В.Г., и др. Клинические испытания программного обеспечения на основе интеллектуальных технологий (лучевая диагностика). Москва, 2019. |
| [75] |
Buvat I, Orlhac F. The Dark Side of Radiomics: On the Paramount Importance of Publishing Negative Results. The Journal of Nuclear Medicine. 2019;60(11):1543–1544. doi: 10.2967/jnumed.119.235325 |
| [76] |
Buvat I., Orlhac F. The Dark Side of Radiomics: On the Paramount Importance of Publishing Negative Results // The Journal of Nuclear Medicine. 2019. Vol. 60, N 11. P. 1543–1544. doi: 10.2967/jnumed.119.235325 |
| [77] |
Kocak B, Bulut E, Bayrak ON, et al. NEgatiVE results in Radiomics research (NEVER): A meta-research study of publication bias in leading radiology journals. European Journal of Radiology. 2023;163. doi: 10.1016/j.ejrad.2023.110830 |
| [78] |
Kocak B., Bulut E., Bayrak O.N., et al. NEgatiVE results in Radiomics research (NEVER): A meta-research study of publication bias in leading radiology journals // European Journal of Radiology. 2023. Vol. 163. doi: 10.1016/j.ejrad.2023.110830 |
| [79] |
Berenguer R, Pastor-Juan MR, Canales-Vázquez J, et al. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters. Radiology. 2018;288(2). doi: 10.1148/radiol.2018172361 |
| [80] |
Berenguer R., Pastor-Juan M.R., Canales-Vázquez J., et al. Radiomics of CT Features May Be Nonreproducible and Redundant: Influence of CT Acquisition Parameters // Radiology. 2018. Vol. 288, N 2. doi: 10.1148/radiol.2018172361 |
| [81] |
Morozov SP, Lindenbraten LD, Gabai PG, et al. Fundamentals of medical imaging management. Morozov SP, editor. Moscow: GEOTAR-Media; 2020. (In Russ). doi: 10.33029/9704-5247-9-MEN-2020-1-424 |
| [82] |
Морозов С.П., Линденбратен Л.Д., Габай П.Г., и др. Основы менеджмента медицинской визуализации / под ред. С.П. Морозова. Москва : ГЭОТАР-Медиа, 2020. doi: 10.33029/9704-5247-9-MEN-2020-1-424 |
| [83] |
Khoruzhaya AN, Ahkmad ES, Semenov DS. The role of the quality control system for diagnostics of oncological diseases in radiomics. Digital Diagnostics. 2021;2(2):170–184. doi: 10.17816/DD60393 |
| [84] |
Хоружая А.Н., Ахмад Е.С., Семенов Д.С. Роль системы контроля качества лучевой диагностики онкологических заболеваний в радиомике // Digital Diagnostics. 2021. Т. 2, № 2. С. 170–184. doi: 10.17816/DD60393 |
Eco-Vector
/
| 〈 |
|
〉 |